Institut National de la Recherche Agronomique, UMR 866 Dynamique Musculaire et Métabolisme, F-34000 Montpellier, France; Université Montpellier 1, F-34000 Montpellier, France; Université Montpellier 2, F-34000 Montpellier, France;
Institut National de la Sante et de la Recherche Medicale (INSERM) U 583, Institut de Neuroscience de Montpellier, France;
Am J Physiol Endocrinol Metab. 2014 Dec 1;307(11):E983-93. doi: 10.1152/ajpendo.00234.2014. Epub 2014 Oct 14.
REDD1 (regulated in development and DNA damage response 1) has been proposed to inhibit the mechanistic target of rapamycin complex 1 (mTORC1) during in vitro hypoxia. REDD1 expression is low under basal conditions but is highly increased in response to several catabolic stresses, like hypoxia and glucocorticoids. However, REDD1 function seems to be tissue and stress dependent, and its role in skeletal muscle in vivo has been poorly characterized. Here, we investigated the effect of REDD1 deletion on skeletal muscle mass, protein synthesis, proteolysis, and mTORC1 signaling pathway under basal conditions and after glucocorticoid administration. Whereas skeletal muscle mass and typology were unchanged between wild-type (WT) and REDD1-null mice, oral gavage with dexamethasone (DEX) for 7 days reduced tibialis anterior and gastrocnemius muscle weights as well as tibialis anterior fiber size only in WT. Similarly, REDD1 deletion prevented the inhibition of protein synthesis and mTORC1 activity (assessed by S6, 4E-BP1, and ULK1 phosphorylation) observed in gastrocnemius muscle of WT mice following single DEX administration for 5 h. However, our results suggest that REDD1-mediated inhibition of mTORC1 in skeletal muscle is not related to the modulation of the binding between TSC2 and 14-3-3. In contrast, our data highlight a new mechanism involved in mTORC1 inhibition linking REDD1, Akt, and PRAS40. Altogether, these results demonstrated in vivo that REDD1 is required for glucocorticoid-induced inhibition of protein synthesis via mTORC1 downregulation. Inhibition of REDD1 may thus be a strategy to limit muscle loss in glucocorticoid-mediated atrophy.
REDD1(发育和 DNA 损伤反应 1 的调节因子)在体外低氧条件下被提议抑制雷帕霉素靶蛋白复合物 1(mTORC1)。REDD1 在基础条件下表达水平较低,但在应对多种分解代谢应激(如缺氧和糖皮质激素)时会显著增加。然而,REDD1 的功能似乎与组织和应激有关,其在体内骨骼肌中的作用尚未得到充分描述。在这里,我们研究了 REDD1 缺失对基础条件下和糖皮质激素给药后骨骼肌质量、蛋白质合成、蛋白水解和 mTORC1 信号通路的影响。尽管野生型(WT)和 REDD1 缺失型小鼠的骨骼肌质量和类型没有变化,但连续 7 天口服给予地塞米松(DEX)会导致比目鱼肌和腓肠肌重量以及比目鱼肌纤维大小在 WT 中减少。同样,REDD1 缺失阻止了 WT 小鼠腓肠肌中单次 DEX 给药 5 小时后观察到的蛋白质合成和 mTORC1 活性(通过 S6、4E-BP1 和 ULK1 磷酸化评估)的抑制。然而,我们的结果表明,REDD1 介导的 mTORC1 在骨骼肌中的抑制与 TSC2 和 14-3-3 之间的结合调节无关。相反,我们的数据突出了一种新的涉及 REDD1、Akt 和 PRAS40 的 mTORC1 抑制机制。总之,这些结果在体内表明 REDD1 是糖皮质激素诱导的蛋白质合成通过 mTORC1 下调所必需的。因此,抑制 REDD1 可能是限制糖皮质激素介导萎缩导致的肌肉损失的一种策略。