Suppr超能文献

确定凋亡触发因素:细胞色素c与心磷脂的相互作用

Defining the Apoptotic Trigger: THE INTERACTION OF CYTOCHROME c AND CARDIOLIPIN.

作者信息

O'Brien Evan S, Nucci Nathaniel V, Fuglestad Brian, Tommos Cecilia, Wand A Joshua

机构信息

From the Johnson Research Foundation and Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6059.

From the Johnson Research Foundation and Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6059

出版信息

J Biol Chem. 2015 Dec 25;290(52):30879-87. doi: 10.1074/jbc.M115.689406. Epub 2015 Oct 20.

Abstract

The interaction between cytochrome c and the anionic lipid cardiolipin has been proposed as a primary event in the apoptotic signaling cascade. Numerous studies that have examined the interaction of cytochrome c with cardiolipin embedded in a variety of model phospholipid membranes have suggested that partial unfolding of the protein is a precursor to the apoptotic response. However, these studies lacked site resolution and used model systems with negligible or a positive membrane curvature, which is distinct from the large negative curvature of the invaginations of the inner mitochondrial membrane where cytochrome c resides. We have used reverse micelle encapsulation to mimic the potential effects of confinement on the interaction of cytochrome c with cardiolipin. Encapsulation of oxidized horse cytochrome c in 1-decanoyl-rac-glycerol/lauryldimethylamine-N-oxide/hexanol reverse micelles prepared in pentane yields NMR spectra essentially identical to the protein in free aqueous solution. The structure of encapsulated ferricytochrome c was determined to high precision (<r.m.s. deviation>bb ∼ 0.23 Å) using NMR-based methods and is closely similar to the cryogenic crystal structure (<r.m.s. deviation>bb ∼ 1.2 Å). Incorporation of cardiolipin into the reverse micelle surfactant shell causes localized chemical shift perturbations of the encapsulated protein, providing the first view of the cardiolipin/cytochrome c interaction interface at atomic resolution. Three distinct sites of interaction are detected: the so-called A- and L-sites, plus a previously undocumented interaction centered on residues Phe-36, Gly-37, Thr-58, Trp-59, and Lys-60. Importantly, in distinct contrast to earlier studies of this interaction, the protein is not significantly disturbed by the binding of cardiolipin in the context of the reverse micelle.

摘要

细胞色素c与阴离子脂质心磷脂之间的相互作用被认为是凋亡信号级联反应中的一个主要事件。众多研究考察了细胞色素c与嵌入各种模型磷脂膜中的心磷脂的相互作用,结果表明蛋白质的部分解折叠是凋亡反应的前奏。然而,这些研究缺乏位点分辨率,并且使用的模型系统具有可忽略不计或正的膜曲率,这与细胞色素c所在的线粒体内膜内陷处的大负曲率不同。我们利用反胶束包封来模拟限制对细胞色素c与心磷脂相互作用的潜在影响。将氧化型马细胞色素c包封在戊烷中制备的1-癸酰-外消旋甘油/月桂基二甲基氧化胺/己醇反胶束中,得到的核磁共振谱与游离水溶液中的蛋白质基本相同。使用基于核磁共振的方法将包封的高铁细胞色素c的结构测定到高精度(<均方根偏差>bb约0.23 Å),并且与低温晶体结构非常相似(<均方根偏差>bb约1.2 Å)。将心磷脂掺入反胶束表面活性剂壳层会导致包封蛋白质的局部化学位移扰动,从而在原子分辨率下首次观察到心磷脂/细胞色素c相互作用界面。检测到三个不同的相互作用位点:所谓的A位点和L位点,以及一个以前未记录的以苯丙氨酸-36、甘氨酸-37、苏氨酸-58、色氨酸-59和赖氨酸-60为中心的相互作用。重要的是,与该相互作用的早期研究形成鲜明对比的是,在反胶束环境中,蛋白质不会因心磷脂的结合而受到显著干扰。

相似文献

1
Defining the Apoptotic Trigger: THE INTERACTION OF CYTOCHROME c AND CARDIOLIPIN.
J Biol Chem. 2015 Dec 25;290(52):30879-87. doi: 10.1074/jbc.M115.689406. Epub 2015 Oct 20.
2
Role of lysines in cytochrome c-cardiolipin interaction.
Biochemistry. 2013 Jul 2;52(26):4578-88. doi: 10.1021/bi400324c. Epub 2013 Jun 21.
3
Curvature-Dependent Binding of Cytochrome to Cardiolipin.
J Am Chem Soc. 2020 Nov 18;142(46):19532-19539. doi: 10.1021/jacs.0c07301. Epub 2020 Nov 6.
4
Surface-Binding to Cardiolipin Nanodomains Triggers Cytochrome c Pro-apoptotic Peroxidase Activity via Localized Dynamics.
Structure. 2019 May 7;27(5):806-815.e4. doi: 10.1016/j.str.2019.02.007. Epub 2019 Mar 14.
5
Cytochrome c-Cardiolipin Complex in a Nonpolar Environment.
Biochemistry (Mosc). 2015 Oct;80(10):1298-302. doi: 10.1134/S0006297915100107.
6
NO binding to the proapoptotic cytochrome c-cardiolipin complex.
Vitam Horm. 2014;96:193-209. doi: 10.1016/B978-0-12-800254-4.00008-8.
7
Raman Spectroscopy Reveals Selective Interactions of Cytochrome c with Cardiolipin That Correlate with Membrane Permeability.
J Am Chem Soc. 2017 Mar 15;139(10):3851-3860. doi: 10.1021/jacs.7b00238. Epub 2017 Mar 7.
8
Cytochrome-c-assisted escape of cardiolipin from a model mitochondrial membrane.
Biochim Biophys Acta Biomembr. 2018 Feb;1860(2):475-480. doi: 10.1016/j.bbamem.2017.10.032. Epub 2017 Nov 4.
9
Molecular mechanisms of apoptosis. structure of cytochrome c-cardiolipin complex.
Biochemistry (Mosc). 2013 Oct;78(10):1086-97. doi: 10.1134/S0006297913100027.

引用本文的文献

1
In silico study of cytochrome-C binding to a cardiolipin-containing membrane.
Eur Biophys J. 2025 Jul 25. doi: 10.1007/s00249-025-01783-7.
2
Probing the Interactions of Cytochrome c with Anionic Phospholipid Nanodiscs Using Millisecond Hydrogen-Deuterium Exchange Mass Spectrometry.
J Am Soc Mass Spectrom. 2025 May 7;36(5):1052-1059. doi: 10.1021/jasms.4c00478. Epub 2025 Apr 2.
4
Cardiac Tyrosine 97 Phosphorylation of Cytochrome Regulates Respiration and Apoptosis.
Int J Mol Sci. 2025 Feb 4;26(3):1314. doi: 10.3390/ijms26031314.
5
Advances in utilizing reverse micelles to investigate membrane proteins.
Biochem Soc Trans. 2024 Dec 19;52(6):2499-2511. doi: 10.1042/BST20240830.
6
An NMR Approach for Investigating Membrane Protein-Lipid Interactions Using Native Reverse Micelles.
Bio Protoc. 2024 Jul 20;14(14):e5039. doi: 10.21769/BioProtoc.5039.
7
Characterization of 10MAG/LDAO reverse micelles: Understanding versatility for protein encapsulation.
Biophys Chem. 2024 Aug;311:107269. doi: 10.1016/j.bpc.2024.107269. Epub 2024 May 21.
9
PB1F2 from Influenza A Virus Regulates the Interaction between Cytochrome C and Cardiolipin.
Membranes (Basel). 2022 Aug 18;12(8):795. doi: 10.3390/membranes12080795.
10
NMR Reveals the Conformational Changes of Cytochrome C upon Interaction with Cardiolipin.
Life (Basel). 2021 Sep 30;11(10):1031. doi: 10.3390/life11101031.

本文引用的文献

2
The nature of protein folding pathways.
Proc Natl Acad Sci U S A. 2014 Nov 11;111(45):15873-80. doi: 10.1073/pnas.1411798111. Epub 2014 Oct 17.
3
Structure of a mitochondrial cytochrome c conformer competent for peroxidase activity.
Proc Natl Acad Sci U S A. 2014 May 6;111(18):6648-53. doi: 10.1073/pnas.1323828111. Epub 2014 Apr 23.
4
High-resolution NMR spectroscopy of encapsulated proteins dissolved in low-viscosity fluids.
J Magn Reson. 2014 Apr;241:137-47. doi: 10.1016/j.jmr.2013.10.006.
6
Role of lysines in cytochrome c-cardiolipin interaction.
Biochemistry. 2013 Jul 2;52(26):4578-88. doi: 10.1021/bi400324c. Epub 2013 Jun 21.
7
Becoming a peroxidase: cardiolipin-induced unfolding of cytochrome c.
J Phys Chem B. 2013 Oct 24;117(42):12878-86. doi: 10.1021/jp402104r. Epub 2013 Jun 25.
8
Exploring signal-to-noise ratio and sensitivity in non-uniformly sampled multi-dimensional NMR spectra.
J Biomol NMR. 2013 Feb;55(2):167-78. doi: 10.1007/s10858-012-9698-2. Epub 2012 Dec 29.
9
Cardiolipin-dependent reconstitution of respiratory supercomplexes from purified Saccharomyces cerevisiae complexes III and IV.
J Biol Chem. 2013 Jan 4;288(1):401-11. doi: 10.1074/jbc.M112.425876. Epub 2012 Nov 21.
10
Origin of the conformational heterogeneity of cardiolipin-bound cytochrome C.
J Am Chem Soc. 2012 Nov 14;134(45):18713-23. doi: 10.1021/ja307426k. Epub 2012 Nov 2.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验