Suppr超能文献

注意力选择可以通过对与任务相关的刺激特征进行强化学习来预测,这些特征由与价值无关的粘性加权。

Attentional Selection Can Be Predicted by Reinforcement Learning of Task-relevant Stimulus Features Weighted by Value-independent Stickiness.

作者信息

Balcarras Matthew, Ardid Salva, Kaping Daniel, Everling Stefan, Womelsdorf Thilo

机构信息

York University, Toronto, Canada.

Boston University.

出版信息

J Cogn Neurosci. 2016 Feb;28(2):333-49. doi: 10.1162/jocn_a_00894. Epub 2015 Oct 21.

Abstract

Attention includes processes that evaluate stimuli relevance, select the most relevant stimulus against less relevant stimuli, and bias choice behavior toward the selected information. It is not clear how these processes interact. Here, we captured these processes in a reinforcement learning framework applied to a feature-based attention task that required macaques to learn and update the value of stimulus features while ignoring nonrelevant sensory features, locations, and action plans. We found that value-based reinforcement learning mechanisms could account for feature-based attentional selection and choice behavior but required a value-independent stickiness selection process to explain selection errors while at asymptotic behavior. By comparing different reinforcement learning schemes, we found that trial-by-trial selections were best predicted by a model that only represents expected values for the task-relevant feature dimension, with nonrelevant stimulus features and action plans having only a marginal influence on covert selections. These findings show that attentional control subprocesses can be described by (1) the reinforcement learning of feature values within a restricted feature space that excludes irrelevant feature dimensions, (2) a stochastic selection process on feature-specific value representations, and (3) value-independent stickiness toward previous feature selections akin to perseveration in the motor domain. We speculate that these three mechanisms are implemented by distinct but interacting brain circuits and that the proposed formal account of feature-based stimulus selection will be important to understand how attentional subprocesses are implemented in primate brain networks.

摘要

注意力包括评估刺激相关性的过程、在较不相关的刺激中选择最相关的刺激,以及使选择行为偏向所选信息。目前尚不清楚这些过程是如何相互作用的。在这里,我们在一个强化学习框架中捕捉到了这些过程,该框架应用于基于特征的注意力任务,要求猕猴在忽略不相关的感觉特征、位置和行动计划的同时学习和更新刺激特征的值。我们发现基于价值的强化学习机制可以解释基于特征的注意力选择和选择行为,但在渐近行为时需要一个独立于价值的粘性选择过程来解释选择错误。通过比较不同的强化学习方案,我们发现逐次试验的选择最能由一个仅表示任务相关特征维度的期望值的模型预测,不相关的刺激特征和行动计划对隐蔽选择只有边际影响。这些发现表明,注意力控制子过程可以通过以下方式来描述:(1)在排除不相关特征维度的受限特征空间内对特征值进行强化学习;(2)对特定于特征的值表示进行随机选择过程;(3)对先前特征选择的独立于价值的粘性,类似于运动领域中的持续性。我们推测这三种机制是由不同但相互作用的脑回路实现的,并且所提出的基于特征的刺激选择的形式化解释对于理解注意力子过程在灵长类动物脑网络中的实现方式将很重要。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验