School of Engineering &Materials Science, Queen Mary University of London, London E1 4NS, UK.
Nanotechnology Platform, Parc Científic de Barcelona, Barcelona 08028, Spain.
Nat Chem. 2015 Nov;7(11):897-904. doi: 10.1038/nchem.2349. Epub 2015 Sep 28.
Controlling molecular interactions between bioinspired molecules can enable the development of new materials with higher complexity and innovative properties. Here we report on a dynamic system that emerges from the conformational modification of an elastin-like protein by peptide amphiphiles and with the capacity to access, and be maintained in, non-equilibrium for substantial periods of time. The system enables the formation of a robust membrane that displays controlled assembly and disassembly capabilities, adhesion and sealing to surfaces, self-healing and the capability to undergo morphogenesis into tubular structures with high spatiotemporal control. We use advanced microscopy along with turbidity and spectroscopic measurements to investigate the mechanism of assembly and its relation to the distinctive membrane architecture and the resulting dynamic properties. Using cell-culture experiments with endothelial and adipose-derived stem cells, we demonstrate the potential of this system to generate complex bioactive scaffolds for applications such as tissue engineering.
控制仿生分子之间的分子相互作用可以开发出具有更高复杂性和创新性特性的新材料。在这里,我们报告了一个动态系统,该系统源于弹性蛋白样蛋白通过肽两亲物的构象修饰,并具有在非平衡状态下长时间保持的能力。该系统能够形成一个坚固的膜,具有可控的组装和拆卸能力、对表面的粘附和密封、自修复以及能够进行高时空控制的管状结构形态发生的能力。我们使用先进的显微镜以及浊度和光谱测量来研究组装的机制及其与独特的膜结构和由此产生的动态特性的关系。通过内皮细胞和脂肪来源的干细胞的细胞培养实验,我们证明了该系统在组织工程等应用中生成复杂的生物活性支架的潜力。