Ravichandran Kanchana R, Minnihan Ellen C, Wei Yifeng, Nocera Daniel G, Stubbe JoAnne
Department of Chemistry and Chemical Biology, Harvard University , 12 Oxford Street, Cambridge, Massachusetts 02138, United States.
J Am Chem Soc. 2015 Nov 18;137(45):14387-95. doi: 10.1021/jacs.5b09189. Epub 2015 Nov 4.
Escherichia coli class Ia ribonucleotide reductase is composed of two subunits (α and β), which form an α2β2 complex that catalyzes the conversion of nucleoside 5'-diphosphates to deoxynucleotides (dNDPs). β2 contains the essential tyrosyl radical (Y122(•)) that generates a thiyl radical (C439(•)) in α2 where dNDPs are made. This oxidation occurs over 35 Å through a pathway of amino acid radical intermediates (Y122 → [W48] → Y356 in β2 to Y731 → Y730 → C439 in α2). However, chemistry is preceded by a slow protein conformational change(s) that prevents observation of these intermediates. 2,3,5-Trifluorotyrosine site-specifically inserted at position 122 of β2 (F3Y(•)-β2) perturbs its conformation and the driving force for radical propagation, while maintaining catalytic activity (1.7 s(-1)). Rapid freeze-quench electron paramagnetic resonance spectroscopy and rapid chemical-quench analysis of the F3Y(•)-β2, α2, CDP, and ATP (effector) reaction show generation of 0.5 equiv of Y356(•) and 0.5 equiv of dCDP, both at 30 s(-1). In the absence of an external reducing system, Y356(•) reduction occurs concomitant with F3Y reoxidation (0.4 s(-1)) and subsequent to oxidation of all α2s. In the presence of a reducing system, a burst of dCDP (0.4 equiv at 22 s(-1)) is observed prior to steady-state turnover (1.7 s(-1)). The [Y356(•)] does not change, consistent with rate-limiting F3Y reoxidation. The data support a mechanism where Y122(•) is reduced and reoxidized on each turnover and demonstrate for the first time the ability of a pathway radical in an active α2β2 complex to complete the catalytic cycle.
大肠杆菌I类核糖核苷酸还原酶由两个亚基(α和β)组成,它们形成一个α2β2复合物,催化核苷5'-二磷酸转化为脱氧核苷酸(dNDPs)。β2含有必需的酪氨酸自由基(Y122(•)),该自由基在合成dNDPs的α2中产生一个硫自由基(C439(•))。这种氧化通过氨基酸自由基中间体的途径(β2中的Y122 → [W48] → Y356至α2中的Y731 → Y730 → C439)在35 Å的距离上发生。然而,在化学反应之前会发生缓慢的蛋白质构象变化,这使得无法观察到这些中间体。特异性插入β2第122位的2,3,5-三氟酪氨酸(F3Y(•)-β2)扰乱了其构象和自由基传播的驱动力,同时保持催化活性(1.7 s(-1))。对F3Y(•)-β2、α2、CDP和ATP(效应物)反应的快速冷冻淬灭电子顺磁共振光谱和快速化学淬灭分析表明,在30 s(-1)时产生了0.5当量的Y356(•)和0.5当量的dCDP。在没有外部还原系统的情况下,Y356(•)的还原与F3Y的再氧化(0.4 s(-1))同时发生,且发生在所有α2被氧化之后。在有还原系统的情况下,在稳态周转(1.7 s(-1))之前观察到一阵dCDP(22 s(-1)时为0.4当量)。[Y356(•)]没有变化,这与限速的F3Y再氧化一致。这些数据支持一种机制,即Y122(•)在每次周转时被还原和再氧化,并首次证明了活性α2β2复合物中的一条途径自由基完成催化循环的能力。