Research group ESR spectroscopy, Max Planck Institute for Multidisciplinary Sciences, 37077 Göttingen, Germany.
Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States.
J Am Chem Soc. 2022 Jun 29;144(25):11270-11282. doi: 10.1021/jacs.2c02906. Epub 2022 Jun 2.
Ribonucleotide reductases (RNRs) catalyze the reduction of ribonucleotides to deoxyribonucleotides, thereby playing a key role in DNA replication and repair. class Ia RNR is an αβ enzyme complex that uses a reversible multistep radical transfer (RT) over 32 Å across its two subunits, α and β, to initiate, using its metallo-cofactor in β, nucleotide reduction in α. Each step is proposed to involve a distinct proton-coupled electron-transfer (PCET) process. An unresolved step is the RT involving Y(β) and Y(α) across the α/β interface. Using 2,3,5-FY-β with 3,5-FY-α, GDP (substrate) and TTP (allosteric effector), a Y intermediate was trapped and its identity was verified by 263 GHz electron paramagnetic resonance (EPR) and 34 GHz pulse electron-electron double resonance spectroscopies. 94 GHz F electron-nuclear double resonance spectroscopy allowed measuring the interspin distances between Y and the F nuclei of 3,5-FY in this RNR mutant. Similar experiments with the double mutant EQ/FY-β were carried out for comparison to the recently published cryo-EM structure of a holo RNR complex. For both mutant combinations, the distance measurements reveal two conformations of 3,5-FY. Remarkably, one conformation is consistent with 3,5-FY within the H-bond distance to Y, whereas the second one is consistent with the conformation observed in the cryo-EM structure. The observations unexpectedly suggest the possibility of a colinear PCET, in which electron and proton are transferred from the same donor to the same acceptor between Y and Y. The results highlight the important role of state-of-the-art EPR spectroscopy to decipher this mechanism.
核酶(RNRs)催化核糖核苷酸还原为脱氧核糖核苷酸,从而在 DNA 复制和修复中发挥关键作用。Ia 类 RNR 是一种 αβ 酶复合物,使用可逆多步自由基转移(RT)在其两个亚基 α 和 β 之间跨越 32 Å,使用其金属辅因子在 β 中启动核苷酸在 α 中的还原。每个步骤都被认为涉及到一个独特的质子偶联电子转移(PCET)过程。一个未解决的步骤是涉及到 α/β 界面上的 Y(β)和 Y(α)的 RT。使用 2,3,5-FY-β 和 3,5-FY-α、GDP(底物)和 TTP(别构效应物),捕获了一个 Y 中间体,并通过 263 GHz 电子顺磁共振(EPR)和 34 GHz 脉冲电子-电子双共振光谱学验证了其身份。94 GHz F 电子-核双共振光谱学允许测量此 RNR 突变体中 Y 和 3,5-FY 的 F 核之间的自旋间距。对于双重突变体 EQ/FY-β 进行了类似的实验,以与最近发表的全酶 RNR 复合物的低温电子显微镜结构进行比较。对于这两种突变体组合,距离测量结果都揭示了 3,5-FY 的两种构象。值得注意的是,一种构象与 Y 之间氢键距离内的 3,5-FY 一致,而另一种构象与低温电子显微镜结构中观察到的构象一致。这些观察结果出人意料地表明了可能存在线性 PCET,其中电子和质子从同一供体转移到 Y 和 Y 之间的同一受体。这些结果强调了先进的 EPR 光谱学在破解这种机制中的重要作用。