Suppr超能文献

F 电子-核双共振揭示了核糖核苷酸还原酶 α/β 界面上氧化还原活性酪氨酸之间的相互作用。

F Electron-Nuclear Double Resonance Reveals Interaction between Redox-Active Tyrosines across the α/β Interface of Ribonucleotide Reductase.

机构信息

Research group ESR spectroscopy, Max Planck Institute for Multidisciplinary Sciences, 37077 Göttingen, Germany.

Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States.

出版信息

J Am Chem Soc. 2022 Jun 29;144(25):11270-11282. doi: 10.1021/jacs.2c02906. Epub 2022 Jun 2.

Abstract

Ribonucleotide reductases (RNRs) catalyze the reduction of ribonucleotides to deoxyribonucleotides, thereby playing a key role in DNA replication and repair. class Ia RNR is an αβ enzyme complex that uses a reversible multistep radical transfer (RT) over 32 Å across its two subunits, α and β, to initiate, using its metallo-cofactor in β, nucleotide reduction in α. Each step is proposed to involve a distinct proton-coupled electron-transfer (PCET) process. An unresolved step is the RT involving Y(β) and Y(α) across the α/β interface. Using 2,3,5-FY-β with 3,5-FY-α, GDP (substrate) and TTP (allosteric effector), a Y intermediate was trapped and its identity was verified by 263 GHz electron paramagnetic resonance (EPR) and 34 GHz pulse electron-electron double resonance spectroscopies. 94 GHz F electron-nuclear double resonance spectroscopy allowed measuring the interspin distances between Y and the F nuclei of 3,5-FY in this RNR mutant. Similar experiments with the double mutant EQ/FY-β were carried out for comparison to the recently published cryo-EM structure of a holo RNR complex. For both mutant combinations, the distance measurements reveal two conformations of 3,5-FY. Remarkably, one conformation is consistent with 3,5-FY within the H-bond distance to Y, whereas the second one is consistent with the conformation observed in the cryo-EM structure. The observations unexpectedly suggest the possibility of a colinear PCET, in which electron and proton are transferred from the same donor to the same acceptor between Y and Y. The results highlight the important role of state-of-the-art EPR spectroscopy to decipher this mechanism.

摘要

核酶(RNRs)催化核糖核苷酸还原为脱氧核糖核苷酸,从而在 DNA 复制和修复中发挥关键作用。Ia 类 RNR 是一种 αβ 酶复合物,使用可逆多步自由基转移(RT)在其两个亚基 α 和 β 之间跨越 32 Å,使用其金属辅因子在 β 中启动核苷酸在 α 中的还原。每个步骤都被认为涉及到一个独特的质子偶联电子转移(PCET)过程。一个未解决的步骤是涉及到 α/β 界面上的 Y(β)和 Y(α)的 RT。使用 2,3,5-FY-β 和 3,5-FY-α、GDP(底物)和 TTP(别构效应物),捕获了一个 Y 中间体,并通过 263 GHz 电子顺磁共振(EPR)和 34 GHz 脉冲电子-电子双共振光谱学验证了其身份。94 GHz F 电子-核双共振光谱学允许测量此 RNR 突变体中 Y 和 3,5-FY 的 F 核之间的自旋间距。对于双重突变体 EQ/FY-β 进行了类似的实验,以与最近发表的全酶 RNR 复合物的低温电子显微镜结构进行比较。对于这两种突变体组合,距离测量结果都揭示了 3,5-FY 的两种构象。值得注意的是,一种构象与 Y 之间氢键距离内的 3,5-FY 一致,而另一种构象与低温电子显微镜结构中观察到的构象一致。这些观察结果出人意料地表明了可能存在线性 PCET,其中电子和质子从同一供体转移到 Y 和 Y 之间的同一受体。这些结果强调了先进的 EPR 光谱学在破解这种机制中的重要作用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6ea5/9248007/579c1c81250a/ja2c02906_0002.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验