Wei Chenyu, Zhao Xuewen, Song Yu, Liu Yi
Tianjin Key Laboratory for Control Theory and Applications in Complicated Systems, School of Electrical Engineering and Automation, Tianjin University of Technology, Tianjin 300384, China.
College of Mechanical and Electrical Engineering, Harbin Engineering University, Harbin 150001, China.
Sensors (Basel). 2025 Apr 9;25(8):2390. doi: 10.3390/s25082390.
In the field of neuroeconomics, the assessment of cognitive workload is a crucial issue with significant implications for real-world applications. Previous research has made progress in task-based germane cognitive load classification, but decentralized studies focusing on task-independent assessment have often produced less than optimal results. In this study, we present a stacked graph attention convolutional networks (SGATCNs) model to tackle the challenges related to task-independent cognitive workload assessment using EEG spatial information. The model employs the differential entropy (DE) and power spectral density (PSD) features of each EEG channel across four frequency bands (delta, theta, alpha, and beta) as node information. For the construction of the network structure, phase-locked values (PLVs), phase-lag indices (PLIs), Pearson correlation coefficients (PCCs), and mutual information (MI) are utilized and evaluated to generate a functional brain network. Specifically, the model aggregates spatial information on the dynamic map by stacking the graph attention layers and utilizes the convolution module to extract the frequency domain information from between the networks under each frequency band. We conducted a cognitive workload experiment with 15 subjects and selected three representative psychological experimental task paradigms (N-back, mental arithmetic, and Sternberg) to induce different levels of cognitive workload (low, medium, and high). Our framework achieved an average accuracy of 65.11% in recognizing the task-independent cognitive workload across the three scenarios.
在神经经济学领域,认知工作量的评估是一个关键问题,对实际应用具有重要意义。以往的研究在基于任务的相关认知负荷分类方面取得了进展,但专注于独立于任务的评估的分散研究往往产生的结果不尽如人意。在本研究中,我们提出了一种堆叠图注意力卷积网络(SGATCNs)模型,以应对使用脑电图(EEG)空间信息进行独立于任务的认知工作量评估所面临的挑战。该模型将四个频段(δ、θ、α和β)上每个EEG通道的微分熵(DE)和功率谱密度(PSD)特征作为节点信息。对于网络结构的构建,利用并评估锁相值(PLV)、相位滞后指数(PLI)、皮尔逊相关系数(PCC)和互信息(MI)来生成功能性脑网络。具体而言,该模型通过堆叠图注意力层在动态地图上聚合空间信息,并利用卷积模块从每个频段下的网络之间提取频域信息。我们对15名受试者进行了认知工作量实验,并选择了三种具有代表性的心理实验任务范式(N-back、心算和斯特恩伯格任务)来诱导不同水平的认知工作量(低水平、中等水平和高水平)。我们的框架在识别三种场景下独立于任务的认知工作量时,平均准确率达到了65.11%。