Suppr超能文献

基于脑电图的工作记忆任务训练的脑力负荷估计器在模拟多属性任务下能很好地工作。

An EEG-based mental workload estimator trained on working memory task can work well under simulated multi-attribute task.

机构信息

Laboratory of Neural Engineering and Rehabilitation, Department of Biomedical Engineering, College of Precision Instruments and Optoelectronics Engineering, Tianjin University Tianjin, China.

出版信息

Front Hum Neurosci. 2014 Sep 8;8:703. doi: 10.3389/fnhum.2014.00703. eCollection 2014.

Abstract

Mental workload (MW)-based adaptive system has been found to be an effective approach to enhance the performance of human-machine interaction and to avoid human error caused by overload. However, MW estimated from the spontaneously generated electroencephalogram (EEG) was found to be task-specific. In existing studies, EEG-based MW classifier can work well under the task used to train the classifier (within-task) but crash completely when used to classify MW of a task that is similar to but not included in the training data (cross-task). The possible causes have been considered to be the task-specific EEG patterns, the mismatched workload across tasks and the temporal effects. In this study, cross-task performance-based feature selection (FS) and regression model were tried to cope with these challenges, in order to make EEG-based MW estimator trained on working memory tasks work well under a complex simulated multi-attribute task (MAT). The results show that the performance of regression model trained on working memory task and tested on multi-attribute task with the feature subset picked-out were significantly improved (correlation coefficient (COR): 0.740 ± 0.147 and 0.598 ± 0.161 for FS data and validation data respectively) when compared to the performance in the same condition with all features (chance level). It can be inferred that there do exist some MW-related EEG features can be picked out and there are something in common between MW of a relatively simple task and a complex task. This study provides a promising approach to measure MW across tasks.

摘要

基于心理工作量 (MW) 的自适应系统已被发现是一种有效提高人机交互性能和避免因过载而导致人为错误的方法。然而,从自发产生的脑电图 (EEG) 中估计的 MW 被发现是特定于任务的。在现有的研究中,基于 EEG 的 MW 分类器在用于训练分类器的任务下(在任务内)表现良好,但在用于分类与训练数据不相似但不包含在训练数据中的任务的 MW 时(跨任务)完全崩溃。可能的原因被认为是特定于任务的 EEG 模式、跨任务的不匹配工作量和时间效应。在这项研究中,尝试了基于跨任务性能的特征选择 (FS) 和回归模型来应对这些挑战,以便使基于 EEG 的 MW 估计器在复杂的模拟多属性任务 (MAT) 下工作良好。结果表明,与使用所有特征(机会水平)在相同条件下的性能相比,在工作记忆任务上训练并在多属性任务上测试的回归模型(特征子集)的性能(相关系数 (COR):0.740 ± 0.147 和 0.598 ± 0.161 分别为 FS 数据和验证数据)有显著提高。可以推断,确实存在一些与 MW 相关的 EEG 特征可以被提取出来,并且相对简单任务和复杂任务之间存在一些共同之处。这项研究为跨任务测量 MW 提供了一种有前途的方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/563a/4157541/5c6771148c6d/fnhum-08-00703-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验