Suppr超能文献

利用去噪自动编码器的堆叠网络集成和抽象神经生理特征识别认知负荷。

Recognition of cognitive load with a stacking network ensemble of denoising autoencoders and abstracted neurophysiological features.

作者信息

Cao Zixuan, Yin Zhong, Zhang Jianhua

机构信息

Engineering Research Center of Optical Instrument and System, Ministry of Education, Shanghai Key Lab of Modern Optical System, University of Shanghai for Science and Technology, Jungong Road 516, Yangpu District, Shanghai, 200093 People's Republic of China.

School of Optical-Electrical and Computer Engineering, University of Shanghai for Science and Technology, Jungong Road 516, Yangpu District, Shanghai, 200093 People's Republic of China.

出版信息

Cogn Neurodyn. 2021 Jun;15(3):425-437. doi: 10.1007/s11571-020-09642-1. Epub 2020 Oct 7.

Abstract

The safety of human-machine systems can be indirectly evaluated based on operator's cognitive load levels at each temporal instant. However, relevant features of cognitive states are hidden behind in multiple sources of cortical neural responses. In this study, we developed a novel neural network ensemble, SE-SDAE, based on stacked denoising autoencoders (SDAEs) which identify different levels of cognitive load by electroencephalography (EEG) signals. To improve the generalization capability of the ensemble framework, a stacking-based approach is adopted to fuse the abstracted EEG features from activations of deep-structured hidden layers. In particular, we also combine multiple K-nearest neighbor and naive Bayesian classifiers with SDAEs to generate a heterogeneous classification committee to enhance ensemble's diversity. Finally, we validate the proposed SE-SDAE by comparing its performance with mainstream pattern classifiers for cognitive load evaluation to show its effectiveness.

摘要

人机系统的安全性可以基于操作员在每个时刻的认知负荷水平进行间接评估。然而,认知状态的相关特征隐藏在皮层神经反应的多个来源背后。在本研究中,我们基于堆叠去噪自编码器(SDAE)开发了一种新型神经网络集成模型SE-SDAE,该模型通过脑电图(EEG)信号识别不同水平的认知负荷。为了提高集成框架的泛化能力,采用基于堆叠的方法来融合从深度结构隐藏层激活中提取的EEG特征。特别是,我们还将多个K近邻和朴素贝叶斯分类器与SDAE相结合,以生成一个异构分类委员会,增强集成的多样性。最后,我们通过将所提出的SE-SDAE与用于认知负荷评估的主流模式分类器的性能进行比较,来验证其有效性,以证明其有效性。

相似文献

本文引用的文献

4
State of science: mental workload in ergonomics.科学现状:人体工程学中的心理负荷
Ergonomics. 2015;58(1):1-17. doi: 10.1080/00140139.2014.956151. Epub 2014 Dec 2.
6
Cross-subject workload classification with a hierarchical Bayes model.跨主题工作负荷分类的层次贝叶斯模型。
Neuroimage. 2012 Jan 2;59(1):64-9. doi: 10.1016/j.neuroimage.2011.07.094. Epub 2011 Aug 16.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验