Konkle Justin J, Goodwill Patrick W, Hensley Daniel W, Orendorff Ryan D, Lustig Michael, Conolly Steven M
Department of Bioengineering, University of California, Berkeley, CA, United States of America.
Department of Bioengineering, University of California, Berkeley, CA, United States of America; Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, CA, United States of America.
PLoS One. 2015 Oct 23;10(10):e0140137. doi: 10.1371/journal.pone.0140137. eCollection 2015.
Magnetic Particle Imaging (mpi) is an emerging imaging modality with exceptional promise for clinical applications in rapid angiography, cell therapy tracking, cancer imaging, and inflammation imaging. Recent publications have demonstrated quantitative mpi across rat sized fields of view with x-space reconstruction methods. Critical to any medical imaging technology is the reliability and accuracy of image reconstruction. Because the average value of the mpi signal is lost during direct-feedthrough signal filtering, mpi reconstruction algorithms must recover this zero-frequency value. Prior x-space mpi recovery techniques were limited to 1d approaches which could introduce artifacts when reconstructing a 3d image. In this paper, we formulate x-space reconstruction as a 3d convex optimization problem and apply robust a priori knowledge of image smoothness and non-negativity to reduce non-physical banding and haze artifacts. We conclude with a discussion of the powerful extensibility of the presented formulation for future applications.
磁粒子成像(MPI)是一种新兴的成像方式,在快速血管造影、细胞治疗追踪、癌症成像和炎症成像等临床应用方面具有非凡的前景。最近的出版物已经证明,使用x空间重建方法可以在大鼠大小的视野范围内进行定量MPI。任何医学成像技术的关键在于图像重建的可靠性和准确性。由于在直接馈通信号滤波过程中MPI信号的平均值会丢失,MPI重建算法必须恢复这个零频率值。先前的x空间MPI恢复技术仅限于一维方法,在重建三维图像时可能会引入伪影。在本文中,我们将x空间重建公式化为一个三维凸优化问题,并应用图像平滑度和非负性的稳健先验知识来减少非物理条纹和模糊伪影。最后,我们讨论了所提出公式在未来应用中的强大可扩展性。
PLoS One. 2015-10-23
IEEE Trans Med Imaging. 2011-3-10
IEEE Trans Med Imaging. 2013-4-5
IEEE Trans Med Imaging. 2018-3-22
Comput Methods Programs Biomed. 2024-7
Phys Med Biol. 2016-8-21
Med Phys. 2019-2-22
Med Phys. 2019-2-14
Biomed Tech (Berl). 2013-12
IEEE Trans Med Imaging. 2016-6-13
IEEE Trans Med Imaging. 2025-5
IEEE Trans Med Imaging. 2017-12-25
Quant Imaging Med Surg. 2018-3
Mol Imaging Biol. 2017-6
Biomed Tech (Berl). 2013-12
IEEE Trans Med Imaging. 2013-4-30
IEEE Trans Med Imaging. 2013-4-12
IEEE Trans Med Imaging. 2013-4-5
J Magn Reson. 2012-12-27
IEEE Trans Med Imaging. 2012-11-15
Adv Mater. 2012-7-24
IEEE Trans Med Imaging. 2012-2-22