Hillenmeyer Maureen E, Vandova Gergana A, Berlew Erin E, Charkoudian Louise K
Stanford Genome Technology Center, Stanford University, Palo Alto, CA 94304;
Stanford Genome Technology Center, Stanford University, Palo Alto, CA 94304; Department of Biochemistry, Stanford University, Palo Alto, CA 94305;
Proc Natl Acad Sci U S A. 2015 Nov 10;112(45):13952-7. doi: 10.1073/pnas.1511688112. Epub 2015 Oct 23.
Natural product biosynthetic pathways generate molecules of enormous structural complexity and exquisitely tuned biological activities. Studies of natural products have led to the discovery of many pharmaceutical agents, particularly antibiotics. Attempts to harness the catalytic prowess of biosynthetic enzyme systems, for both compound discovery and engineering, have been limited by a poor understanding of the evolution of the underlying gene clusters. We developed an approach to study the evolution of biosynthetic genes on a cluster-wide scale, integrating pairwise gene coevolution information with large-scale phylogenetic analysis. We used this method to infer the evolution of type II polyketide gene clusters, tracing the path of evolution from the single ancestor to those gene clusters surviving today. We identified 10 key gene types in these clusters, most of which were swapped in from existing cellular processes and subsequently specialized. The ancestral type II polyketide gene cluster likely comprised a core set of five genes, a roster that expanded and contracted throughout evolution. A key C24 ancestor diversified into major classes of longer and shorter chain length systems, from which a C20 ancestor gave rise to the majority of characterized type II polyketide antibiotics. Our findings reveal that (i) type II polyketide structure is predictable from its gene roster, (ii) only certain gene combinations are compatible, and (iii) gene swaps were likely a key to evolution of chemical diversity. The lessons learned about how natural selection drives polyketide chemical innovation can be applied to the rational design and guided discovery of chemicals with desired structures and properties.
天然产物生物合成途径产生结构极其复杂且生物活性经过精细调节的分子。对天然产物的研究已促成了许多药物制剂的发现,尤其是抗生素。在化合物发现和工程方面,利用生物合成酶系统的催化能力的尝试一直受到对潜在基因簇进化了解不足的限制。我们开发了一种在全簇范围内研究生物合成基因进化的方法,将成对基因协同进化信息与大规模系统发育分析相结合。我们使用这种方法推断II型聚酮化合物基因簇的进化,追溯从单一祖先到如今仍存在的那些基因簇的进化路径。我们在这些基因簇中鉴定出10种关键基因类型,其中大多数是从现有的细胞过程中交换而来并随后特化的。原始的II型聚酮化合物基因簇可能由一组核心的五个基因组成,这个基因清单在整个进化过程中有所增减。一个关键的C24祖先分化为长链和短链长度系统的主要类别,从中一个C20祖先产生了大多数已表征的II型聚酮化合物抗生素。我们的研究结果表明:(i)II型聚酮化合物的结构可从其基因清单预测;(ii)只有某些基因组合是兼容的;(iii)基因交换可能是化学多样性进化的关键。从自然选择如何驱动聚酮化合物化学创新中学到的经验教训可应用于具有所需结构和性质的化学品的合理设计和定向发现。