Suppr超能文献

利用时间上一致的ICESat-2、陆地卫星和实地调查数据进行区域尺度森林地上生物量测绘。

Regional-scale forest aboveground biomass mapping using temporally consistent ICESat-2, Landsat, and field inventory data.

作者信息

Tiwari Kasip, Narine Lana L, Maggard Adam, Daniel Marissa, Gallagher Thomas, Fan Zhaofei, Singh Bikram, Sandamali Janaki

机构信息

The Timberland Group Forestry Services Limited Liability Company, Atlanta, Georgia.

College of Forestry, Wildlife and Environment, Auburn University, Auburn, Alabama, United States of America.

出版信息

PLoS One. 2025 Sep 11;20(9):e0330831. doi: 10.1371/journal.pone.0330831. eCollection 2025.

Abstract

Spatially continuous and accurate estimation of forest aboveground biomass (AGB) is essential for understanding carbon storage, ecosystem health, and biodiversity. Forests of the southeastern United States (US) represent about 40% of the nation's forest area and one of the most significant carbon sequestration and storage potentials in the US. The availability of data from more recent and long-standing Earth-observing missions, like spaceborne light detection and ranging data from NASA's Ice, Cloud, and land Elevation Satellite-2 (ICESat-2) and imagery from Landsat satellites, present an exemplary opportunity to characterize vegetation structure and AGB. Despite this potential, the extent to which data from these ongoing missions can be used synergistically for AGB estimation at the regional scale is not well known. This study served to better understand the combined utility of Landsat and ICESat-2 for developing a large-area AGB mapping framework. Specifically, this work served to: (1) determine the best modeling technique for estimating field-derived AGB using ICESat-2 and Landsat-derived variables, among machine learning (random forest (RF) and support vector machine (SVM)) and geostatistical approaches (random forest regression kriging (RFRK) and support vector machine regression kriging (SVMRK)), and (2) create a high-resolution (30 m) baseline AGB map for the year 2020 across ~254,266 km² of forests of the southeastern US. Canopy height information from ICESat-2, Landsat-8 imagery and imagery-derived variables, digital elevation models, and canopy cover were used to model AGB. Resulting models yielded R2 values ranging from 0.34 to 0.61, and RMSEs between 22 and 31 Mg/ha. Evidently, AGB estimated using the SVMRK model was substantially better than the other models (R2 = 0.61 and RMSE = 23.99 Mg/ha), highlighting its potential for broad-scale AGB mapping. Overall, this work highlights a feasible approach for deriving spatially comprehensive AGB information for southeastern US forests and provides a high-resolution AGB baseline product to support regional-scale monitoring.

摘要

对森林地上生物量(AGB)进行空间连续且准确的估算,对于理解碳储存、生态系统健康和生物多样性至关重要。美国东南部的森林约占全国森林面积的40%,是美国最重要的碳固存和储存潜力地区之一。来自近期和长期地球观测任务的数据,如美国国家航空航天局(NASA)的冰、云和陆地高程卫星-2(ICESat-2)的星载光探测和测距数据以及陆地卫星的图像,为描述植被结构和AGB提供了一个绝佳机会。尽管有这种潜力,但这些正在进行的任务的数据在区域尺度上协同用于AGB估算的程度尚不清楚。本研究旨在更好地理解陆地卫星和ICESat-2在开发大面积AGB制图框架方面的综合效用。具体而言,这项工作旨在:(1)在机器学习(随机森林(RF)和支持向量机(SVM))和地统计方法(随机森林回归克里金法(RFRK)和支持向量机回归克里金法(SVMRK))中,确定使用ICESat-2和陆地卫星衍生变量估算实地AGB的最佳建模技术,以及(2)为美国东南部约254,266平方公里的森林创建2020年的高分辨率(30米)AGB基线地图。利用ICESat-2的冠层高度信息、陆地卫星8号图像及图像衍生变量、数字高程模型和冠层覆盖来模拟AGB。所得模型的R2值在0.34至0.61之间,均方根误差在22至31 Mg/公顷之间。显然,使用SVMRK模型估算的AGB明显优于其他模型(R2 = 0.61,RMSE = 23.99 Mg/公顷),突出了其在大规模AGB制图方面的潜力。总体而言,这项工作突出了一种可行的方法,可为美国东南部森林获取空间全面的AGB信息,并提供了一个高分辨率AGB基线产品以支持区域尺度监测。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cf89/12425310/b189e3a25ff1/pone.0330831.g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验