Tao Y, Navaretti P, Hauert R, Grob U, Poggio M
Department of Physics, ETH Zurich, Otto Stern Weg 1, 8093 Zurich, Switzerland. Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge MA 02139, USA.
Nanotechnology. 2015 Nov 20;26(46):465501. doi: 10.1088/0957-4484/26/46/465501. Epub 2015 Oct 26.
We report on mechanical dissipation measurements carried out on thin (∼100 nm), single-crystal silicon cantilevers with varying chemical surface termination. We find that the 1-2 nm-thick native oxide layer of silicon contributes about 85% to the friction of the mechanical resonance. We show that the mechanical friction is proportional to the thickness of the oxide layer and that it crucially depends on oxide formation conditions. We further demonstrate that chemical surface protection by nitridation, liquid-phase hydrosilylation, or gas-phase hydrosilylation can inhibit rapid oxide formation in air and results in a permanent improvement of the mechanical quality factor between three- and five-fold. This improvement extends to cryogenic temperatures. Presented recipes can be directly integrated with standard cleanroom processes and may be especially beneficial for ultrasensitive nanomechanical force- and mass sensors, including silicon cantilevers, membranes, or nanowires.
我们报告了对具有不同化学表面终止的薄(约100纳米)单晶硅悬臂进行的机械耗散测量。我们发现,硅的1-2纳米厚的天然氧化层对机械共振的摩擦力贡献约85%。我们表明,机械摩擦力与氧化层厚度成正比,并且它关键取决于氧化物形成条件。我们进一步证明,通过氮化、液相硅氢化或气相硅氢化进行的化学表面保护可以抑制空气中快速形成氧化物,并导致机械品质因数永久性提高三到五倍。这种改进延伸到低温。所提出的方法可以直接与标准洁净室工艺集成,并且对于超灵敏的纳米机械力传感器和质量传感器,包括硅悬臂、膜或纳米线,可能特别有益。