Matériaux et Phénomènes Quantiques, Université Paris Diderot, CNRS UMR 7162, Sorbonne Paris Cité, 75013 Paris, France.
Institut d'Electronique, de Microélectronique et de Nanotechnologie, UMR CNRS 8520, Avenue Poincaré, 59652, Villeneuve d'Ascq, France.
Phys Rev Lett. 2018 Jun 1;120(22):223601. doi: 10.1103/PhysRevLett.120.223601.
We report on a systematic study of nanomechanical dissipation in high-frequency (≈300 MHz) gallium arsenide optomechanical disk resonators, in conditions where clamping and fluidic losses are negligible. Phonon-phonon interactions are shown to contribute with a loss background fading away at cryogenic temperatures (3 K). Atomic layer deposition of alumina at the surface modifies the quality factor of resonators, pointing towards the importance of surface dissipation. The temperature evolution is accurately fitted by two-level systems models, showing that nanomechanical dissipation in gallium arsenide resonators directly connects to their microscopic properties. Two-level systems, notably at surfaces, appear to rule the damping and fluctuations of such high-quality crystalline nanomechanical devices, at all temperatures from 3 to 300 K.
我们报告了在高频(约 300MHz)砷化镓光机械盘谐振器中纳米力学耗散的系统研究,在这种情况下,夹持和流体损耗可以忽略不计。实验表明,在低温(3K)下,声子-声子相互作用会导致损耗背景逐渐消失。在表面进行原子层沉积氧化铝可以改变谐振器的品质因数,这表明表面耗散的重要性。温度演化可以通过双能级系统模型进行精确拟合,表明砷化镓谐振器中的纳米力学耗散与其微观特性直接相关。双能级系统,特别是在表面,似乎控制着这种高质量晶体纳米力学器件在从 3K 到 300K 的所有温度下的阻尼和波动。