Suppr超能文献

多重、全蛋白质组范围的蛋白质表达谱分析:酵母去泛素化酶基因敲除菌株

Multiplexed, Proteome-Wide Protein Expression Profiling: Yeast Deubiquitylating Enzyme Knockout Strains.

作者信息

Isasa Marta, Rose Christopher M, Elsasser Suzanne, Navarrete-Perea José, Paulo Joao A, Finley Daniel J, Gygi Steven P

机构信息

Department of Cell Biology, Harvard Medical School , Boston, Massachusetts 02115, United States.

National Autonomous University of Mexico, Av. Universidad 3000, Mexico City, District Federal 04510, Mexico.

出版信息

J Proteome Res. 2015 Dec 4;14(12):5306-17. doi: 10.1021/acs.jproteome.5b00802. Epub 2015 Nov 4.

Abstract

Characterizing a protein's function often requires a description of the cellular state in its absence. Multiplexing in mass spectrometry-based proteomics has now achieved the ability to globally measure protein expression levels in yeast from 10 cell states simultaneously. We applied this approach to quantify expression differences in wild type and nine deubiquitylating enzyme (DUB) knockout strains with the goal of creating "information networks" that might provide deeper, mechanistic insights into a protein's biological role. In total, more than 3700 proteins were quantified with high reproducibility across three biological replicates (30 samples in all). DUB mutants demonstrated different proteomics profiles, consistent with distinct roles for each family member. These included differences in total ubiquitin levels and specific chain linkages. Moreover, specific expression changes suggested novel functions for several DUB family members. For instance, the ubp3Δ mutant showed large expression changes for members of the cytochrome C oxidase complex, consistent with a role for Ubp3 in mitochondrial regulation. Several DUBs also showed broad expression changes for phosphate transporters as well as other components of the inorganic phosphate signaling pathway, suggesting a role for these DUBs in regulating phosphate metabolism. These data highlight the potential of multiplexed proteome-wide analyses for biological investigation and provide a framework for further study of the DUB family. Our methods are readily applicable to the entire collection of yeast deletion mutants and may help facilitate systematic analysis of yeast and other organisms.

摘要

表征一种蛋白质的功能通常需要描述其缺失时的细胞状态。基于质谱的蛋白质组学中的多重分析现已实现了同时从10种细胞状态全局测量酵母中蛋白质表达水平的能力。我们应用这种方法来量化野生型和9种去泛素化酶(DUB)敲除菌株中的表达差异,目的是创建“信息网络”,从而可能为蛋白质的生物学作用提供更深入的机制性见解。总共对超过3700种蛋白质进行了定量,在三个生物学重复样本(共30个样本)中具有高重现性。DUB突变体表现出不同的蛋白质组学特征,这与每个家族成员的不同作用一致。这些差异包括总泛素水平和特定链连接的差异。此外,特定的表达变化表明几个DUB家族成员具有新功能。例如,ubp3Δ突变体显示细胞色素C氧化酶复合体成员有较大的表达变化,这与Ubp3在线粒体调节中的作用一致。几个DUB还显示出磷酸盐转运蛋白以及无机磷酸盐信号通路的其他组分有广泛的表达变化,表明这些DUB在调节磷酸盐代谢中起作用。这些数据突出了多重全蛋白质组分析在生物学研究中的潜力,并为进一步研究DUB家族提供了一个框架。我们的方法很容易应用于酵母缺失突变体的整个集合,可能有助于促进对酵母和其他生物体的系统分析。

相似文献

1
Multiplexed, Proteome-Wide Protein Expression Profiling: Yeast Deubiquitylating Enzyme Knockout Strains.
J Proteome Res. 2015 Dec 4;14(12):5306-17. doi: 10.1021/acs.jproteome.5b00802. Epub 2015 Nov 4.
2
Comprehensive profiling of proteome changes upon sequential deletion of deubiquitylating enzymes.
J Proteomics. 2012 Jul 16;75(13):3886-97. doi: 10.1016/j.jprot.2012.04.055. Epub 2012 May 24.
3
Analysis of the deubiquitinating enzymes of the yeast Saccharomyces cerevisiae.
Biol Chem. 2000 Sep-Oct;381(9-10):981-92. doi: 10.1515/BC.2000.121.
4
Splitting the task: Ubp8 and Ubp10 deubiquitinate different cellular pools of H2BK123.
Genes Dev. 2011 Nov 1;25(21):2242-7. doi: 10.1101/gad.177220.111.
5
The pleiotropic deubiquitinase Ubp3 confers aneuploidy tolerance.
Genes Dev. 2016 Oct 15;30(20):2259-2271. doi: 10.1101/gad.287474.116. Epub 2016 Nov 2.
6
Proteome-wide abundance profiling of yeast deletion strains for GET pathway members using sample multiplexing.
Proteomics. 2024 Sep;24(17):e2300303. doi: 10.1002/pmic.202300303. Epub 2023 Oct 26.
7
Deubiquitinase Ubp3 enhances the proteasomal degradation of key enzymes in sterol homeostasis.
J Biol Chem. 2021 Jan-Jun;296:100348. doi: 10.1016/j.jbc.2021.100348. Epub 2021 Jan 29.
8
A balance of deubiquitinating enzymes controls cell cycle entry.
Mol Biol Cell. 2018 Nov 15;29(23):2821-2834. doi: 10.1091/mbc.E18-07-0425. Epub 2018 Sep 12.
9
[Application of proteomics in deubiquitinases research].
Sheng Wu Gong Cheng Xue Bao. 2014 Sep;30(9):1341-50.
10
Active site alanine mutations convert deubiquitinases into high-affinity ubiquitin-binding proteins.
EMBO Rep. 2018 Oct;19(10). doi: 10.15252/embr.201745680. Epub 2018 Aug 27.

引用本文的文献

1
Age-dependent topoisomerase I depletion alters recruitment of rDNA silencing complexes.
bioRxiv. 2025 Aug 1:2025.07.29.667507. doi: 10.1101/2025.07.29.667507.
2
SUMO-targeted Ubiquitin Ligases as crucial mediators of protein homeostasis in Candida glabrata.
PLoS Pathog. 2024 Dec 6;20(12):e1012742. doi: 10.1371/journal.ppat.1012742. eCollection 2024 Dec.
4
The proteomic landscape of genome-wide genetic perturbations.
Cell. 2023 Apr 27;186(9):2018-2034.e21. doi: 10.1016/j.cell.2023.03.026. Epub 2023 Apr 19.
5
Advances in Mass Spectrometry-Based Single Cell Analysis.
Biology (Basel). 2023 Mar 2;12(3):395. doi: 10.3390/biology12030395.
6
Driver Mutations Dictate the Immunologic Landscape and Response to Checkpoint Immunotherapy of Glioblastoma.
Cancer Immunol Res. 2023 May 3;11(5):629-645. doi: 10.1158/2326-6066.CIR-22-0655.
7
Identification of Deubiquitinase Substrates in Saccharomyces cerevisiae by Systematic Overexpression.
Methods Mol Biol. 2023;2591:237-253. doi: 10.1007/978-1-0716-2803-4_14.
8
Oocytes maintain ROS-free mitochondrial metabolism by suppressing complex I.
Nature. 2022 Jul;607(7920):756-761. doi: 10.1038/s41586-022-04979-5. Epub 2022 Jul 20.
9
Transcriptome innovations in primates revealed by single-molecule long-read sequencing.
Genome Res. 2022 Aug 25;32(8):1448-1462. doi: 10.1101/gr.276395.121.
10
Deubiquitinase Ubp3 enhances the proteasomal degradation of key enzymes in sterol homeostasis.
J Biol Chem. 2021 Jan-Jun;296:100348. doi: 10.1016/j.jbc.2021.100348. Epub 2021 Jan 29.

本文引用的文献

1
Comprehensive Temporal Protein Dynamics during the Diauxic Shift in Saccharomyces cerevisiae.
Mol Cell Proteomics. 2015 Sep;14(9):2454-65. doi: 10.1074/mcp.M114.045849. Epub 2015 Jun 15.
2
3
Synthetic quantitative array technology identifies the Ubp3-Bre5 deubiquitinase complex as a negative regulator of mitophagy.
Cell Rep. 2015 Feb 24;10(7):1215-25. doi: 10.1016/j.celrep.2015.01.044. Epub 2015 Feb 19.
6
7
Ion coalescence of neutron encoded TMT 10-plex reporter ions.
Anal Chem. 2014 Apr 1;86(7):3594-601. doi: 10.1021/ac500140s. Epub 2014 Mar 11.
8
Fine-tuning of DNA damage-dependent ubiquitination by OTUB2 supports the DNA repair pathway choice.
Mol Cell. 2014 Feb 20;53(4):617-30. doi: 10.1016/j.molcel.2014.01.030.
9
Minimal, encapsulated proteomic-sample processing applied to copy-number estimation in eukaryotic cells.
Nat Methods. 2014 Mar;11(3):319-24. doi: 10.1038/nmeth.2834. Epub 2014 Feb 2.
10
Genome-wide consequences of deleting any single gene.
Mol Cell. 2013 Nov 21;52(4):485-94. doi: 10.1016/j.molcel.2013.09.026. Epub 2013 Nov 7.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验