Zhang Yanwen, Stocks G Malcolm, Jin Ke, Lu Chenyang, Bei Hongbin, Sales Brian C, Wang Lumin, Béland Laurent K, Stoller Roger E, Samolyuk German D, Caro Magdalena, Caro Alfredo, Weber William J
Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA.
Department of Materials Science and Engineering, University of Tennessee, Knoxville, Tennessee 37996, USA.
Nat Commun. 2015 Oct 28;6:8736. doi: 10.1038/ncomms9736.
A grand challenge in materials research is to understand complex electronic correlation and non-equilibrium atomic interactions, and how such intrinsic properties and dynamic processes affect energy transfer and defect evolution in irradiated materials. Here we report that chemical disorder, with an increasing number of principal elements and/or altered concentrations of specific elements, in single-phase concentrated solid solution alloys can lead to substantial reduction in electron mean free path and orders of magnitude decrease in electrical and thermal conductivity. The subsequently slow energy dissipation affects defect dynamics at the early stages, and consequentially may result in less deleterious defects. Suppressed damage accumulation with increasing chemical disorder from pure nickel to binary and to more complex quaternary solid solutions is observed. Understanding and controlling energy dissipation and defect dynamics by altering alloy complexity may pave the way for new design principles of radiation-tolerant structural alloys for energy applications.
材料研究中的一个重大挑战是理解复杂的电子关联和非平衡原子相互作用,以及这些内在特性和动态过程如何影响辐照材料中的能量转移和缺陷演化。在此,我们报告,在单相浓固溶体合金中,随着主元素数量的增加和/或特定元素浓度的改变而产生的化学无序,会导致电子平均自由程大幅缩短,以及电导率和热导率下降几个数量级。随后缓慢的能量耗散在早期阶段影响缺陷动力学,进而可能导致危害性较小的缺陷。从纯镍到二元合金再到更复杂的四元固溶体,随着化学无序度的增加,损伤积累得到抑制。通过改变合金复杂性来理解和控制能量耗散及缺陷动力学,可能为能源应用中耐辐射结构合金的新设计原则铺平道路。