Senkov O N, Miller J D, Miracle D B, Woodward C
Air Force Research Laboratory, Materials and Manufacturing Directorate, 2230 Tenth Street, Wright-Patterson AFB, Ohio 45433, USA.
Nat Commun. 2015 Mar 5;6:6529. doi: 10.1038/ncomms7529.
Recent multi-principal element, high entropy alloy (HEA) development strategies vastly expand the number of candidate alloy systems, but also pose a new challenge--how to rapidly screen thousands of candidate alloy systems for targeted properties. Here we develop a new approach to rapidly assess structural metals by combining calculated phase diagrams with simple rules based on the phases present, their transformation temperatures and useful microstructures. We evaluate over 130,000 alloy systems, identifying promising compositions for more time-intensive experimental studies. We find the surprising result that solid solution alloys become less likely as the number of alloy elements increases. This contradicts the major premise of HEAs--that increased configurational entropy increases the stability of disordered solid solution phases. As the number of elements increases, the configurational entropy rises slowly while the probability of at least one pair of elements favouring formation of intermetallic compounds increases more rapidly, explaining this apparent contradiction.
近期的多主元高熵合金(HEA)开发策略极大地扩展了候选合金体系的数量,但同时也带来了一项新挑战——如何针对目标性能快速筛选数以千计的候选合金体系。在此,我们开发了一种新方法,通过将计算相图与基于所存在的相、它们的转变温度及有用微观结构的简单规则相结合,来快速评估结构金属。我们评估了超过130,000个合金体系,识别出有前景的成分以供开展更耗时的实验研究。我们发现了一个惊人的结果:随着合金元素数量的增加,固溶体合金出现的可能性降低。这与高熵合金的主要前提相矛盾——即构型熵的增加会提高无序固溶体相的稳定性。随着元素数量的增加,构型熵上升缓慢,而至少有一对元素有利于金属间化合物形成的概率增加得更快,这就解释了这一明显的矛盾。