Luo Zhiling, Gao Wang, Jiang Qing
Key Laboratory of Automobile Materials (Jilin University), Ministry of Education, Department of Materials Science and Engineering, Jilin University, Changchun 130022, China.
Sci Adv. 2025 Jan 3;11(1):eadr4697. doi: 10.1126/sciadv.adr4697.
Vacancies are crucial for the radiation resistance, strength, and ductility of high-entropy alloys (HEAs). However, complex electronic interactions resulting from chemical disorder prohibit the quantification of vacancy formation energy () and migration barriers (). Herein, we propose an electronic descriptor χ (electronegativity χ and valence-electron number ) to quantify the bonding strength of constituents on the basis of the tight-binding model, which allows us to build analytical models to achieve the site-to-site quantification of and . The descriptor χ reflects the d-band occupation, indicating the dominant role of the electronic interactions in the vacancy formation and migration of HEAs. As a size effect, local lattice distortion plays a more important role in vacancy migration than in vacancy formation. Our model establishes a universal physical picture of vacancy formation and migration, which helps to understand the radiation resistance and mechanical properties of HEAs, thereby accelerating the design of high-performance HEAs.
空位对于高熵合金(HEA)的抗辐射性、强度和延展性至关重要。然而,化学无序导致的复杂电子相互作用阻碍了空位形成能()和迁移势垒()的量化。在此,我们基于紧束缚模型提出了一个电子描述符χ(电负性χ和价电子数)来量化组分的键合强度,这使我们能够建立分析模型以实现对和的逐位点量化。描述符χ反映了d带占据情况,表明电子相互作用在高熵合金空位形成和迁移中起主导作用。作为一种尺寸效应,局部晶格畸变在空位迁移中比在空位形成中起更重要的作用。我们的模型建立了空位形成和迁移的通用物理图景,这有助于理解高熵合金的抗辐射性和力学性能,从而加速高性能高熵合金的设计。