Weissfeld J L, Holloway J J, Kirscht J P
Medical Service, Veterans Administration Medical Center, Ann Arbor, Michigan 48105.
J Clin Epidemiol. 1989;42(3):231-43. doi: 10.1016/0895-4356(89)90059-0.
Problems with self-report measures for smoking motivate the use of biochemical tests in treatment trials for smoking. These biochemical tests, unfortunately, are not perfect. In this paper, we present an algebraic model of bias in treatment trials for smoking. Bias is expressed in terms of the deception rate among continued smokers in a control group, the relative deception rate among continued smokers in an experimental group, and the sensitivity and specificity of a biochemical test which may be used either to confirm self-reports of quitting or to replace self-report entirely. For given test specificity and sensitivity, the model defines deception rates for which different biochemical testing strategies are preferred. The model is presented in the context of current knowledge on the phenomenon of deception among adult smokers. The paper concludes that better judgements regarding the role of biochemical tests in treatment trials for smoking require more precise information regarding the magnitude and determinants of deception.
吸烟自我报告测量方法存在的问题促使人们在吸烟治疗试验中使用生化检测。然而,这些生化检测并非完美无缺。在本文中,我们提出了一个关于吸烟治疗试验偏差的代数模型。偏差通过对照组中持续吸烟者的欺骗率、实验组中持续吸烟者的相对欺骗率以及一种生化检测的敏感度和特异度来表示,该生化检测可用于确认戒烟的自我报告或完全替代自我报告。对于给定的检测特异度和敏感度,该模型定义了不同生化检测策略更受青睐时的欺骗率。该模型是在当前关于成年吸烟者欺骗现象的知识背景下提出的。本文得出结论,要更好地判断生化检测在吸烟治疗试验中的作用,需要更精确的关于欺骗程度和决定因素的信息。