Suppr超能文献

衰老研究中的数据协调:没那么快。

Data Harmonization in Aging Research: Not so Fast.

作者信息

Gatz Margaret, Reynolds Chandra A, Finkel Deborah, Hahn Chris J, Zhou Yan, Zavala Catalina

机构信息

a Department of Psychology , University of Southern California , Los Angeles , California , USA.

b Department of Medical Epidemiology and Biostatics , Karolinska Institutet , Stockholm , Sweden.

出版信息

Exp Aging Res. 2015;41(5):475-95. doi: 10.1080/0361073X.2015.1085748.

Abstract

BACKGROUND/STUDY CONTEXT: Harmonizing measures in order to conduct pooled data analyses has become a scientific priority in aging research. Retrospective harmonization where different studies lack common measures of comparable constructs presents a major challenge. This study compared different approaches to harmonization with a crosswalk sample who completed multiple versions of the measures to be harmonized.

METHODS

Through online recruitment, 1061 participants aged 30 to 98 answered two different depression scales, and 1065 participants answered multiple measures of subjective health. Rational and configural methods of harmonization were applied, using the crosswalk sample to determine their success; and empirical item response theory (IRT) methods were applied in order empirically to compare items from different measures as answered by the same person.

RESULTS

For depression, IRT worked well to provide a conversion table between different measures. The rational method of extracting semantically matched items from each of the two scales proved an acceptable alternative to IRT. For subjective health, only configural harmonization was supported. The subjective health items used in most studies form a single robust factor.

CONCLUSION

Caution is required in aging research when pooling data across studies using different measures of the same construct. Of special concern are response scales that vary widely in the number of response options, especially if the anchors are asymmetrical. A crosswalk sample that has completed items from each of the measures being harmonized allows the investigator to use empirical approaches to identify flawed assumptions in rational or configural approaches to harmonizing.

摘要

背景/研究背景:为了进行汇总数据分析而统一测量方法已成为衰老研究中的一项科学重点。当不同研究缺乏可比结构的共同测量方法时,回顾性统一会带来重大挑战。本研究将不同的统一方法与一个完成了要统一的测量方法的多个版本的交叉样本进行了比较。

方法

通过在线招募,1061名年龄在30至98岁之间的参与者回答了两种不同的抑郁量表,1065名参与者回答了主观健康的多项测量。应用了统一的合理方法和构型方法,使用交叉样本确定其成功率;并应用了实证项目反应理论(IRT)方法,以便从经验上比较同一人回答的不同测量中的项目。

结果

对于抑郁,IRT能够很好地提供不同测量之间的转换表。从两个量表中分别提取语义匹配项目的合理方法被证明是IRT的一种可接受的替代方法。对于主观健康,仅支持构型统一。大多数研究中使用的主观健康项目形成了一个单一的稳健因素。

结论

在衰老研究中,当跨研究汇总使用同一结构的不同测量的数据时需要谨慎。特别值得关注的是反应选项数量差异很大的反应量表,尤其是如果锚点不对称时。一个完成了要统一的每个测量项目的交叉样本使研究者能够使用实证方法来识别统一的合理或构型方法中存在缺陷的假设。

相似文献

1
Data Harmonization in Aging Research: Not so Fast.衰老研究中的数据协调:没那么快。
Exp Aging Res. 2015;41(5):475-95. doi: 10.1080/0361073X.2015.1085748.

引用本文的文献

7
Dementia and mortality in older adults: A twin study.老年人痴呆症与死亡率:一项双胞胎研究。
Alzheimers Dement. 2024 Mar;20(3):1682-1692. doi: 10.1002/alz.13553. Epub 2023 Dec 11.
9
Worldwide mapping of initiatives that integrate population cohorts.整合人群队列的计划的全球地图绘制。
Front Public Health. 2022 Oct 3;10:964086. doi: 10.3389/fpubh.2022.964086. eCollection 2022.

本文引用的文献

5
The PhenX Toolkit: get the most from your measures. PhenX 工具包:充分利用您的测量结果。
Am J Epidemiol. 2011 Aug 1;174(3):253-60. doi: 10.1093/aje/kwr193. Epub 2011 Jul 11.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验