University of Washington School of Medicine, Seattle, WA, USA.
Seattle Children's Hospital, Seattle, WA, USA.
Prev Sci. 2023 Nov;24(8):1569-1580. doi: 10.1007/s11121-022-01381-5. Epub 2022 Jul 7.
There has been increasing interest in applying integrative data analysis (IDA) to analyze data across multiple studies to increase sample size and statistical power. Measures of a construct are frequently not consistent across studies. This article provides a tutorial on the complex decisions that occur when conducting harmonization of measures for an IDA, including item selection, response coding, and modeling decisions. We analyzed caregivers' self-reported data from the ADHD Teen Integrative Data Analysis Longitudinal (ADHD TIDAL) dataset; data from 621 of 854 caregivers were available. We used moderated nonlinear factor analysis (MNLFA) to harmonize items reflecting depressive symptoms. Items were drawn from the Symptom Checklist 90-Revised, the Patient Health Questionnaire-9, and the World Health Organization Quality of Life questionnaire. Conducting IDA often requires more programming skills (e.g., Mplus), statistical knowledge (e.g., IRT framework), and complex decision-making processes than single-study analyses and meta-analyses. Through this paper, we described how we evaluated item characteristics, determined differences across studies, and created a single harmonized factor score that can be used to analyze data across all four studies. We also presented our questions, challenges, and decision-making processes; for example, we explained the thought process and course of actions when models did not converge. This tutorial provides a resource to support prevention scientists to generate harmonized variables accounting for sample and study differences.
人们越来越感兴趣地将综合数据分析(IDA)应用于分析多个研究的数据,以增加样本量和统计效力。结构的度量在不同的研究中通常不一致。本文提供了一个教程,介绍了在进行 IDA 的度量协调时所涉及的复杂决策,包括项目选择、响应编码和建模决策。我们分析了 ADHD 青少年综合数据分析纵向研究(ADHD TIDAL)数据集的照顾者自我报告数据;共有 854 名照顾者中的 621 名提供了数据。我们使用调节非线性因子分析(MNLFA)来协调反映抑郁症状的项目。这些项目来自症状检查表 90 修订版、患者健康问卷 9 和世界卫生组织生活质量问卷。与单研究分析和荟萃分析相比,进行 IDA 通常需要更多的编程技能(例如 Mplus)、统计知识(例如 IRT 框架)和复杂的决策过程。通过本文,我们描述了我们如何评估项目特征、确定研究之间的差异以及创建可用于分析所有四项研究数据的单一协调因子得分。我们还介绍了我们的问题、挑战和决策过程;例如,我们解释了当模型不收敛时的思维过程和行动过程。本教程提供了一个资源,以支持预防科学家生成协调变量,以考虑样本和研究差异。