Suppr超能文献

进化原理在癌症治疗中的应用。

Application of Evolutionary Principles to Cancer Therapy.

作者信息

Enriquez-Navas Pedro M, Wojtkowiak Jonathan W, Gatenby Robert A

机构信息

Department of Cancer Imaging and Metabolism, Moffitt Cancer Center, Tampa, Florida.

出版信息

Cancer Res. 2015 Nov 15;75(22):4675-80. doi: 10.1158/0008-5472.CAN-15-1337. Epub 2015 Nov 2.

Abstract

The dynamic cancer ecosystem, with its rich temporal and spatial diversity in environmental conditions and heritable cell phenotypes, is remarkably robust to therapeutic perturbations. Even when response to therapy is clinically complete, adaptive tumor strategies almost inevitably emerge and the tumor returns. Although evolution of resistance remains the proximate cause of death in most cancer patients, a recent analysis found that evolutionary terms were included in less than 1% of articles on the cancer treatment outcomes, and this has not changed in 30 years. Here, we review treatment methods that attempt to understand and exploit intratumoral evolution to prolong response to therapy. In general, we find that treating metastatic (i.e., noncurable) cancers using the traditional strategy aimed at killing the maximum number of tumor cells is evolutionarily unsound because, by eliminating all treatment-sensitive cells, it enables rapid proliferation of resistant populations-a well-known evolutionary phenomenon termed "competitive release." Alternative strategies, such as adaptive therapy, "ersatzdroges," and double-bind treatments, shift focus from eliminating tumor cells to evolution-based methods that suppress growth of resistant populations to maintain long-term control.

摘要

动态癌症生态系统在环境条件和可遗传细胞表型方面具有丰富的时空多样性,对治疗干扰具有显著的鲁棒性。即使临床治疗反应完全,适应性肿瘤策略几乎不可避免地会出现,肿瘤会复发。虽然耐药性的演变仍然是大多数癌症患者死亡的直接原因,但最近的一项分析发现,在关于癌症治疗结果的文章中,不到1%的文章包含进化相关术语,而且30年来这种情况一直没有改变。在这里,我们回顾了一些治疗方法,这些方法试图理解和利用肿瘤内进化来延长治疗反应。总体而言,我们发现,使用旨在杀死最大数量肿瘤细胞的传统策略治疗转移性(即不可治愈)癌症在进化上是不合理的,因为通过消除所有对治疗敏感的细胞,它会使耐药群体迅速增殖——这是一种众所周知的进化现象,称为“竞争释放”。替代策略,如适应性治疗、“替代药物”和双重约束治疗,将重点从消除肿瘤细胞转移到基于进化的方法,即抑制耐药群体的生长以维持长期控制。

相似文献

1
Application of Evolutionary Principles to Cancer Therapy.进化原理在癌症治疗中的应用。
Cancer Res. 2015 Nov 15;75(22):4675-80. doi: 10.1158/0008-5472.CAN-15-1337. Epub 2015 Nov 2.
2
Adaptive therapy.适应性疗法
Cancer Res. 2009 Jun 1;69(11):4894-903. doi: 10.1158/0008-5472.CAN-08-3658.
5
The Evolution and Ecology of Resistance in Cancer Therapy.癌症治疗中耐药性的演变和生态学。
Cold Spring Harb Perspect Med. 2020 Nov 2;10(11):a040972. doi: 10.1101/cshperspect.a040972.
6
Evolutionary dynamics in cancer therapy.癌症治疗中的进化动力学。
Mol Pharm. 2011 Dec 5;8(6):2094-100. doi: 10.1021/mp2002279. Epub 2011 Aug 23.
7
Is adaptive therapy natural?适应疗法是自然的吗?
PLoS Biol. 2018 Oct 2;16(10):e2007066. doi: 10.1371/journal.pbio.2007066. eCollection 2018 Oct.
10

引用本文的文献

2
Generative AI - Assisted Adaptive Cancer Therapy.生成式人工智能辅助的适应性癌症治疗
Cancer Control. 2025 Jan-Dec;32:10732748251349919. doi: 10.1177/10732748251349919. Epub 2025 Jun 18.
9
Cell-cell fusion in cancer: The next cancer hallmark?细胞融合与癌症:下一个癌症标志?
Int J Biochem Cell Biol. 2024 Oct;175:106649. doi: 10.1016/j.biocel.2024.106649. Epub 2024 Aug 24.

本文引用的文献

1
2
Metronomic chemotherapy from rationale to clinical studies: a dream or reality?节拍化疗:从理论依据到临床研究,是梦想还是现实?
Crit Rev Oncol Hematol. 2015 Jul;95(1):46-61. doi: 10.1016/j.critrevonc.2015.01.008. Epub 2015 Jan 20.
8
Herbicide resistance modelling: past, present and future.除草剂抗性建模:过去、现在与未来。
Pest Manag Sci. 2014 Sep;70(9):1394-404. doi: 10.1002/ps.3773. Epub 2014 Apr 28.
9
Quantitative imaging in cancer evolution and ecology.癌症进化与生态的定量成像。
Radiology. 2013 Oct;269(1):8-15. doi: 10.1148/radiol.13122697.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验