IEEE Trans Vis Comput Graph. 2016 Jan;22(1):1-10. doi: 10.1109/TVCG.2015.2468078.
We propose a visual analytics approach for the exploration and analysis of dynamic networks. We consider snapshots of the network as points in high-dimensional space and project these to two dimensions for visualization and interaction using two juxtaposed views: one for showing a snapshot and one for showing the evolution of the network. With this approach users are enabled to detect stable states, recurring states, outlier topologies, and gain knowledge about the transitions between states and the network evolution in general. The components of our approach are discretization, vectorization and normalization, dimensionality reduction, and visualization and interaction, which are discussed in detail. The effectiveness of the approach is shown by applying it to artificial and real-world dynamic networks.
我们提出了一种用于动态网络探索和分析的可视分析方法。我们将网络的快照视为高维空间中的点,并使用两个并列的视图将这些点投影到二维空间中进行可视化和交互:一个用于显示快照,一个用于显示网络的演变。通过这种方法,用户能够检测到稳定状态、重复状态、异常拓扑结构,并获得关于状态之间的转换以及网络演变的一般知识。我们的方法的组件包括离散化、向量化和归一化、降维和可视化和交互,这些组件都进行了详细讨论。通过将该方法应用于人工和真实世界的动态网络,展示了该方法的有效性。