IEEE Trans Vis Comput Graph. 2017 Jul;23(7):1739-1752. doi: 10.1109/TVCG.2016.2570755. Epub 2016 May 19.
Progressive Visual Analytics aims at improving the interactivity in existing analytics techniques by means of visualization as well as interaction with intermediate results. One key method for data analysis is dimensionality reduction, for example, to produce 2D embeddings that can be visualized and analyzed efficiently. t-Distributed Stochastic Neighbor Embedding (tSNE) is a well-suited technique for the visualization of high-dimensional data. tSNE can create meaningful intermediate results but suffers from a slow initialization that constrains its application in Progressive Visual Analytics. We introduce a controllable tSNE approximation (A-tSNE), which trades off speed and accuracy, to enable interactive data exploration. We offer real-time visualization techniques, including a density-based solution and a Magic Lens to inspect the degree of approximation. With this feedback, the user can decide on local refinements and steer the approximation level during the analysis. We demonstrate our technique with several datasets, in a real-world research scenario and for the real-time analysis of high-dimensional streams to illustrate its effectiveness for interactive data analysis.
渐进式可视分析旨在通过可视化以及与中间结果的交互来改进现有分析技术的交互性。数据分析的一种关键方法是降维,例如,生成可以有效地可视化和分析的 2D 嵌入。t 分布随机近邻嵌入(tSNE)是一种非常适合高维数据可视化的技术。tSNE 可以创建有意义的中间结果,但初始化速度较慢,限制了其在渐进式可视分析中的应用。我们引入了一种可控的 tSNE 逼近(A-tSNE),它在速度和准确性之间进行权衡,以实现交互式数据探索。我们提供了实时可视化技术,包括基于密度的解决方案和魔术镜头,以检查逼近程度。通过这种反馈,用户可以决定在分析过程中的局部细化和逼近级别。我们使用几个数据集、一个真实世界的研究场景和实时分析高维流来演示我们的技术,以说明其在交互式数据分析中的有效性。