Oelz Dietmar B, Rubinstein Boris Y, Mogilner Alex
Courant Institute of Mathematical Sciences, New York University, New York, New York.
Stowers Institute, Kansas City, Missouri.
Biophys J. 2015 Nov 3;109(9):1818-29. doi: 10.1016/j.bpj.2015.09.013.
We investigate computationally the self-organization and contraction of an initially random actomyosin ring. In the framework of a detailed physical model for a ring of cross-linked actin filaments and myosin-II clusters, we derive the force balance equations and solve them numerically. We find that to contract, actin filaments have to treadmill and to be sufficiently cross linked, and myosin has to be processive. The simulations reveal how contraction scales with mechanochemical parameters. For example, they show that the ring made of longer filaments generates greater force but contracts slower. The model predicts that the ring contracts with a constant rate proportional to the initial ring radius if either myosin is released from the ring during contraction and actin filaments shorten, or if myosin is retained in the ring, while the actin filament number decreases. We demonstrate that a balance of actin nucleation and compression-dependent disassembly can also sustain contraction. Finally, the model demonstrates that with time pattern formation takes place in the ring, worsening the contractile process. The more random the actin dynamics are, the higher the contractility will be.
我们通过计算研究了初始随机的肌动球蛋白环的自组织和收缩过程。在一个关于交联肌动蛋白丝环和肌球蛋白-II簇的详细物理模型框架内,我们推导了力平衡方程并进行了数值求解。我们发现,为了实现收缩,肌动蛋白丝必须进行踏车运动且要有足够的交联,而肌球蛋白必须具有持续性。模拟揭示了收缩如何随机械化学参数变化。例如,它们表明由较长丝构成的环产生更大的力但收缩较慢。该模型预测,如果在收缩过程中肌球蛋白从环中释放且肌动蛋白丝缩短,或者如果肌球蛋白保留在环中而肌动蛋白丝数量减少,环将以与初始环半径成比例的恒定速率收缩。我们证明肌动蛋白成核与压缩依赖性解聚之间的平衡也能维持收缩。最后,该模型表明随着时间推移,环中会发生模式形成,从而使收缩过程恶化。肌动蛋白动力学越随机,收缩性就越高。