Suppr超能文献

双方差成分模型改进了家族数据集中的遗传预测。

Two-Variance-Component Model Improves Genetic Prediction in Family Datasets.

作者信息

Tucker George, Loh Po-Ru, MacLeod Iona M, Hayes Ben J, Goddard Michael E, Berger Bonnie, Price Alkes L

机构信息

Department of Mathematics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Epidemiology, Harvard T. H. Chan School of Public Health, Harvard University, Boston, MA 02115, USA; Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA.

Department of Epidemiology, Harvard T. H. Chan School of Public Health, Harvard University, Boston, MA 02115, USA; Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA.

出版信息

Am J Hum Genet. 2015 Nov 5;97(5):677-90. doi: 10.1016/j.ajhg.2015.10.002.

Abstract

Genetic prediction based on either identity by state (IBS) sharing or pedigree information has been investigated extensively with best linear unbiased prediction (BLUP) methods. Such methods were pioneered in plant and animal-breeding literature and have since been applied to predict human traits, with the aim of eventual clinical utility. However, methods to combine IBS sharing and pedigree information for genetic prediction in humans have not been explored. We introduce a two-variance-component model for genetic prediction: one component for IBS sharing and one for approximate pedigree structure, both estimated with genetic markers. In simulations using real genotypes from the Candidate-gene Association Resource (CARe) and Framingham Heart Study (FHS) family cohorts, we demonstrate that the two-variance-component model achieves gains in prediction r(2) over standard BLUP at current sample sizes, and we project, based on simulations, that these gains will continue to hold at larger sample sizes. Accordingly, in analyses of four quantitative phenotypes from CARe and two quantitative phenotypes from FHS, the two-variance-component model significantly improves prediction r(2) in each case, with up to a 20% relative improvement. We also find that standard mixed-model association tests can produce inflated test statistics in datasets with related individuals, whereas the two-variance-component model corrects for inflation.

摘要

基于状态一致性(IBS)共享或系谱信息的遗传预测已通过最佳线性无偏预测(BLUP)方法进行了广泛研究。此类方法开创于动植物育种文献,此后已应用于预测人类性状,旨在实现最终的临床应用。然而,尚未探索将IBS共享和系谱信息相结合用于人类遗传预测的方法。我们引入了一种用于遗传预测的双方差成分模型:一个成分用于IBS共享,另一个用于近似系谱结构,两者均通过遗传标记进行估计。在使用候选基因关联资源(CARe)和弗雷明汉心脏研究(FHS)家系队列的真实基因型进行的模拟中,我们证明在当前样本量下,双方差成分模型在预测r(2)方面比标准BLUP有提升,并且基于模拟,我们预计在更大样本量下这些提升仍将持续。因此,在对CARe的四种定量表型和FHS的两种定量表型进行分析时,双方差成分模型在每种情况下都显著提高了预测r(2),相对提升高达20%。我们还发现,标准混合模型关联检验在有相关个体的数据集中可能会产生膨胀的检验统计量,而双方差成分模型可以校正这种膨胀。

相似文献

引用本文的文献

4
Trade-offs of Linear Mixed Models in Genome-Wide Association Studies.全基因组关联研究中线性混合模型的权衡
J Comput Biol. 2022 Mar;29(3):233-242. doi: 10.1089/cmb.2021.0157. Epub 2022 Feb 25.

本文引用的文献

3
Genomic heritability: what is it?基因组遗传力:它是什么?
PLoS Genet. 2015 May 5;11(5):e1005048. doi: 10.1371/journal.pgen.1005048. eCollection 2015 May.
9
Effective genetic-risk prediction using mixed models.使用混合模型进行有效的遗传风险预测。
Am J Hum Genet. 2014 Oct 2;95(4):383-93. doi: 10.1016/j.ajhg.2014.09.007.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验