Suppr超能文献

使用贝叶斯混合模型对复杂性状进行同时发现、估计和预测分析。

Simultaneous discovery, estimation and prediction analysis of complex traits using a bayesian mixture model.

作者信息

Moser Gerhard, Lee Sang Hong, Hayes Ben J, Goddard Michael E, Wray Naomi R, Visscher Peter M

机构信息

Queensland Brain Institute, University of Queensland, Brisbane, Australia.

Department of Primary Industries, Biosciences Research Division, Bundoora, Australia; Dairy Futures Cooperative Research Centre, Bundoora, Australia.

出版信息

PLoS Genet. 2015 Apr 7;11(4):e1004969. doi: 10.1371/journal.pgen.1004969. eCollection 2015 Apr.

Abstract

Gene discovery, estimation of heritability captured by SNP arrays, inference on genetic architecture and prediction analyses of complex traits are usually performed using different statistical models and methods, leading to inefficiency and loss of power. Here we use a Bayesian mixture model that simultaneously allows variant discovery, estimation of genetic variance explained by all variants and prediction of unobserved phenotypes in new samples. We apply the method to simulated data of quantitative traits and Welcome Trust Case Control Consortium (WTCCC) data on disease and show that it provides accurate estimates of SNP-based heritability, produces unbiased estimators of risk in new samples, and that it can estimate genetic architecture by partitioning variation across hundreds to thousands of SNPs. We estimated that, depending on the trait, 2,633 to 9,411 SNPs explain all of the SNP-based heritability in the WTCCC diseases. The majority of those SNPs (>96%) had small effects, confirming a substantial polygenic component to common diseases. The proportion of the SNP-based variance explained by large effects (each SNP explaining 1% of the variance) varied markedly between diseases, ranging from almost zero for bipolar disorder to 72% for type 1 diabetes. Prediction analyses demonstrate that for diseases with major loci, such as type 1 diabetes and rheumatoid arthritis, Bayesian methods outperform profile scoring or mixed model approaches.

摘要

基因发现、通过单核苷酸多态性(SNP)阵列估计遗传力、推断遗传结构以及对复杂性状进行预测分析,通常使用不同的统计模型和方法,这导致效率低下和功效损失。在这里,我们使用一种贝叶斯混合模型,该模型同时允许进行变异发现、估计所有变异解释的遗传方差以及预测新样本中未观察到的表型。我们将该方法应用于数量性状的模拟数据以及疾病方面的威康信托病例对照协会(WTCCC)数据,并表明它能提供基于SNP的遗传力的准确估计,在新样本中产生无偏风险估计量,并且能够通过划分数百到数千个SNP的变异来估计遗传结构。我们估计,根据性状不同,在WTCCC疾病中,2633至9411个SNP解释了所有基于SNP的遗传力。这些SNP中的大多数(>96%)效应较小,证实了常见疾病中存在大量多基因成分。由大效应(每个SNP解释1%的方差)解释的基于SNP的方差比例在不同疾病之间差异显著,从双相情感障碍的几乎零到1型糖尿病的72%不等。预测分析表明,对于具有主要基因座的疾病,如1型糖尿病和类风湿性关节炎,贝叶斯方法优于轮廓评分或混合模型方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6a24/4388571/f2f067f4cae1/pgen.1004969.g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验