Suppr超能文献

CRISPR/Cas9:一种用于在非洲爪蟾中筛选人类疾病基因的廉价且高效的功能丧失工具。

CRISPR/Cas9: An inexpensive, efficient loss of function tool to screen human disease genes in Xenopus.

作者信息

Bhattacharya Dipankan, Marfo Chris A, Li Davis, Lane Maura, Khokha Mustafa K

机构信息

Departments of Genetics and Pediatrics, Yale University School of Medicine, New Haven, CT 06520, United States.

Departments of Genetics and Pediatrics, Yale University School of Medicine, New Haven, CT 06520, United States.

出版信息

Dev Biol. 2015 Dec 15;408(2):196-204. doi: 10.1016/j.ydbio.2015.11.003. Epub 2015 Nov 4.

Abstract

Congenital malformations are the major cause of infant mortality in the US and Europe. Due to rapid advances in human genomics, we can now efficiently identify sequence variants that may cause disease in these patients. However, establishing disease causality remains a challenge. Additionally, in the case of congenital heart disease, many of the identified candidate genes are either novel to embryonic development or have no known function. Therefore, there is a pressing need to develop inexpensive and efficient technologies to screen these candidate genes for disease phenocopy in model systems and to perform functional studies to uncover their role in development. For this purpose, we sought to test F0 CRISPR based gene editing as a loss of function strategy for disease phenocopy in the frog model organism, Xenopus tropicalis. We demonstrate that the CRISPR/Cas9 system can efficiently modify both alleles in the F0 generation within a few hours post fertilization, recapitulating even early disease phenotypes that are highly similar to knockdowns from morpholino oligos (MOs) in nearly all cases tested. We find that injecting Cas9 protein is dramatically more efficacious and less toxic than cas9 mRNA. We conclude that CRISPR based F0 gene modification in X. tropicalis is efficient and cost effective and readily recapitulates disease and MO phenotypes.

摘要

先天性畸形是美国和欧洲婴儿死亡的主要原因。由于人类基因组学的快速发展,我们现在能够有效地识别可能导致这些患者患病的序列变异。然而,确定疾病因果关系仍然是一项挑战。此外,就先天性心脏病而言,许多已鉴定的候选基因对于胚胎发育来说是新发现的,或者其功能未知。因此,迫切需要开发廉价且高效的技术,以便在模型系统中筛选这些候选基因的疾病表型模拟情况,并开展功能研究以揭示它们在发育过程中的作用。为此,我们试图测试基于F0 CRISPR的基因编辑技术,将其作为在非洲爪蟾(Xenopus tropicalis)这种青蛙模式生物中进行疾病表型模拟的功能丧失策略。我们证明,CRISPR/Cas9系统能够在受精后数小时内有效地修饰F0代中的两个等位基因,在几乎所有测试案例中,甚至能够重现与吗啉代寡核苷酸(MOs)敲低后高度相似的早期疾病表型。我们发现,注射Cas9蛋白比注射cas9 mRNA的效果显著更好且毒性更低。我们得出结论,在非洲爪蟾中基于CRISPR的F0基因修饰是高效且具有成本效益的,并且能够轻易重现疾病和MO表型。

相似文献

1
CRISPR/Cas9: An inexpensive, efficient loss of function tool to screen human disease genes in Xenopus.
Dev Biol. 2015 Dec 15;408(2):196-204. doi: 10.1016/j.ydbio.2015.11.003. Epub 2015 Nov 4.
2
CRISPR/Cas9 F0 Screening of Congenital Heart Disease Genes in Xenopus tropicalis.
Methods Mol Biol. 2018;1865:163-174. doi: 10.1007/978-1-4939-8784-9_12.
3
Methods for CRISPR/Cas9 Xenopus tropicalis Tissue-Specific Multiplex Genome Engineering.
Methods Mol Biol. 2018;1865:33-54. doi: 10.1007/978-1-4939-8784-9_3.
4
Efficient RNA/Cas9-mediated genome editing in Xenopus tropicalis.
Development. 2014 Feb;141(3):707-14. doi: 10.1242/dev.099853. Epub 2014 Jan 8.
5
Rapid and efficient analysis of gene function using CRISPR-Cas9 in Xenopus tropicalis founders.
Genes Cells. 2016 Jul;21(7):755-71. doi: 10.1111/gtc.12379. Epub 2016 May 24.
6
An analysis of MyoD-dependent transcription using CRISPR/Cas9 gene targeting in Xenopus tropicalis embryos.
Mech Dev. 2017 Aug;146:1-9. doi: 10.1016/j.mod.2017.05.002. Epub 2017 May 20.
7
Modeling human point mutation diseases in with a modified CRISPR/Cas9 system.
FASEB J. 2019 Jun;33(6):6962-6968. doi: 10.1096/fj.201802661R. Epub 2019 Mar 7.
8
Cancer Models in Xenopus tropicalis by CRISPR/Cas9 Mediated Knockout of Tumor Suppressors.
Methods Mol Biol. 2018;1865:147-161. doi: 10.1007/978-1-4939-8784-9_11.
9
Genotyping of CRISPR/Cas9 Genome Edited Xenopus tropicalis.
Methods Mol Biol. 2018;1865:67-82. doi: 10.1007/978-1-4939-8784-9_5.
10

引用本文的文献

1
X-CRISP: domain-adaptable and interpretable CRISPR repair outcome prediction.
Bioinform Adv. 2025 Jul 2;5(1):vbaf157. doi: 10.1093/bioadv/vbaf157. eCollection 2025.
2
Phenotype to genotype: A new and rapid approach using whole-genome sequencing.
PLoS Genet. 2025 Jul 14;21(7):e1011702. doi: 10.1371/journal.pgen.1011702. eCollection 2025 Jul.
3
Genomic Complexity of in : Implications for CRISPR Targeting and Disease Modeling.
MicroPubl Biol. 2025 May 9;2025. doi: 10.17912/micropub.biology.001596. eCollection 2025.
4
Centriolar defects underlie a primary ciliary dyskinesia phenotype in an adenylate kinase 7 deficient ciliated epithelium.
Dev Biol. 2025 Aug;524:152-161. doi: 10.1016/j.ydbio.2025.05.011. Epub 2025 May 15.
5
as an infection model for human pathogenic bacteria.
Infect Immun. 2025 Jun 10;93(6):e0012625. doi: 10.1128/iai.00126-25. Epub 2025 May 1.
6
Autism gene variants disrupt enteric neuron migration and cause gastrointestinal dysmotility.
Nat Commun. 2025 Mar 6;16(1):2238. doi: 10.1038/s41467-025-57342-3.
7
X-CRISP: Domain-Adaptable and Interpretable CRISPR Repair Outcome Prediction.
bioRxiv. 2025 Apr 23:2025.02.06.636858. doi: 10.1101/2025.02.06.636858.
9
The Heterotaxy Gene CCDC11 Is Important for Cytokinesis via RhoA Regulation.
Cytoskeleton (Hoboken). 2025 Jun;82(6):360-371. doi: 10.1002/cm.21952. Epub 2024 Oct 31.
10
CC2D1A causes ciliopathy, intellectual disability, heterotaxy, renal dysplasia, and abnormal CSF flow.
Life Sci Alliance. 2024 Aug 21;7(10). doi: 10.26508/lsa.202402708. Print 2024 Oct.

本文引用的文献

1
Efficient Multiple Genome Modifications Induced by the crRNAs, tracrRNA and Cas9 Protein Complex in Zebrafish.
PLoS One. 2015 May 26;10(5):e0128319. doi: 10.1371/journal.pone.0128319. eCollection 2015.
2
Targeted gene disruption in Xenopus laevis using CRISPR/Cas9.
Cell Biosci. 2015 Apr 14;5:15. doi: 10.1186/s13578-015-0006-1. eCollection 2015.
3
Global genetic analysis in mice unveils central role for cilia in congenital heart disease.
Nature. 2015 May 28;521(7553):520-4. doi: 10.1038/nature14269. Epub 2015 Mar 25.
4
Fast and sensitive detection of indels induced by precise gene targeting.
Nucleic Acids Res. 2015 May 19;43(9):e59. doi: 10.1093/nar/gkv126. Epub 2015 Mar 9.
5
Reverse genetic screening reveals poor correlation between morpholino-induced and mutant phenotypes in zebrafish.
Dev Cell. 2015 Jan 12;32(1):97-108. doi: 10.1016/j.devcel.2014.11.018. Epub 2014 Dec 18.
6
Cas9-based genome editing in Xenopus tropicalis.
Methods Enzymol. 2014;546:355-75. doi: 10.1016/B978-0-12-801185-0.00017-9.
8
Efficient mutagenesis by Cas9 protein-mediated oligonucleotide insertion and large-scale assessment of single-guide RNAs.
PLoS One. 2014 May 29;9(5):e98186. doi: 10.1371/journal.pone.0098186. eCollection 2014.
9
CRISPR/Cas9 mediated genome engineering in Drosophila.
Methods. 2014 Sep;69(2):128-36. doi: 10.1016/j.ymeth.2014.02.019. Epub 2014 Feb 24.
10
Efficient RNA/Cas9-mediated genome editing in Xenopus tropicalis.
Development. 2014 Feb;141(3):707-14. doi: 10.1242/dev.099853. Epub 2014 Jan 8.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验