Suppr超能文献

生物活性水泥凝结过程中机械韧性的原子和振动起源

Atomic and vibrational origins of mechanical toughness in bioactive cement during setting.

作者信息

Tian Kun V, Yang Bin, Yue Yuanzheng, Bowron Daniel T, Mayers Jerry, Donnan Robert S, Dobó-Nagy Csaba, Nicholson John W, Fang De-Cai, Greer A Lindsay, Chass Gregory A, Greaves G Neville

机构信息

Department of Oral Diagnostics, Faculty of Dentistry, Semmelweis University, Budapest 1088, Hungary.

Department of Electronic and Electrical Engineering, University of Chester, Thornton Science Park, Chester CH2 4NU, UK.

出版信息

Nat Commun. 2015 Nov 9;6:8631. doi: 10.1038/ncomms9631.

Abstract

Bioactive glass ionomer cements (GICs) have been in widespread use for ∼40 years in dentistry and medicine. However, these composites fall short of the toughness needed for permanent implants. Significant impediment to improvement has been the requisite use of conventional destructive mechanical testing, which is necessarily retrospective. Here we show quantitatively, through the novel use of calorimetry, terahertz (THz) spectroscopy and neutron scattering, how GIC's developing fracture toughness during setting is related to interfacial THz dynamics, changing atomic cohesion and fluctuating interfacial configurations. Contrary to convention, we find setting is non-monotonic, characterized by abrupt features not previously detected, including a glass-polymer coupling point, an early setting point, where decreasing toughness unexpectedly recovers, followed by stress-induced weakening of interfaces. Subsequently, toughness declines asymptotically to long-term fracture test values. We expect the insight afforded by these in situ non-destructive techniques will assist in raising understanding of the setting mechanisms and associated dynamics of cementitious materials.

摘要

生物活性玻璃离子水门汀(GICs)在牙科和医学领域已广泛应用约40年。然而,这些复合材料缺乏永久植入物所需的韧性。传统破坏性机械测试的必要使用严重阻碍了改进,因为这种测试必然是回顾性的。在此,我们通过量热法、太赫兹(THz)光谱和中子散射的创新性应用,定量展示了GIC在固化过程中不断发展的断裂韧性如何与界面THz动力学、原子内聚力变化以及界面构型波动相关。与传统观点相反,我们发现固化过程是非单调的,其特征是存在先前未检测到的突变特征,包括玻璃 - 聚合物耦合点、早期固化点,在该点韧性意外恢复,随后是应力诱导的界面弱化。随后,韧性渐近下降至长期断裂测试值。我们预计这些原位无损技术所提供的见解将有助于加深对胶凝材料固化机制及相关动力学的理解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a053/4659834/ee6f35fbc300/ncomms9631-f1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验