Suppr超能文献

脊索动物神经系统的起源与演化。

The origin and evolution of chordate nervous systems.

作者信息

Holland Linda Z

机构信息

Marine Biology Research Division, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA 92093-0202, USA

出版信息

Philos Trans R Soc Lond B Biol Sci. 2015 Dec 19;370(1684). doi: 10.1098/rstb.2015.0048.

Abstract

In the past 40 years, comparisons of developmental gene expression and mechanisms of development (evodevo) joined comparative morphology as tools for reconstructing long-extinct ancestral forms. Unfortunately, both approaches typically give congruent answers only with closely related organisms. Chordate nervous systems are good examples. Classical studies alone left open whether the vertebrate brain was a new structure or evolved from the anterior end of an ancestral nerve cord like that of modern amphioxus. Evodevo plus electron microscopy showed that the amphioxus brain has a diencephalic forebrain, small midbrain, hindbrain and spinal cord with parts of the genetic mechanisms for the midbrain/hindbrain boundary, zona limitans intrathalamica and neural crest. Evodevo also showed how extra genes resulting from whole-genome duplications in vertebrates facilitated evolution of new structures like neural crest. Understanding how the chordate central nervous system (CNS) evolved from that of the ancestral deuterostome has been truly challenging. The majority view is that this ancestor had a CNS with a brain that gave rise to the chordate CNS and, with loss of a discrete brain, to one of the two hemichordate nerve cords. The minority view is that this ancestor had no nerve cord; those in chordates and hemichordates evolved independently. New techniques such as phylostratigraphy may help resolve this conundrum.

摘要

在过去的40年里,发育基因表达与发育机制的比较(进化发育生物学)成为了与比较形态学一样的工具,用于重建早已灭绝的祖先形态。不幸的是,这两种方法通常只有在研究亲缘关系较近的生物体时才会给出一致的答案。脊索动物的神经系统就是很好的例子。仅靠经典研究无法确定脊椎动物的大脑是一种新结构,还是从现代文昌鱼那样的祖先神经索前端进化而来。进化发育生物学加上电子显微镜研究表明,文昌鱼的大脑有间脑前脑、小中脑、后脑和脊髓,具备中脑/后脑边界、丘脑间限制带和神经嵴的部分遗传机制。进化发育生物学还揭示了脊椎动物全基因组复制产生的额外基因如何促进了神经嵴等新结构的进化。理解脊索动物的中枢神经系统(CNS)是如何从祖先的后口动物进化而来,一直是一项极具挑战性的任务。多数观点认为,这个祖先的中枢神经系统有一个大脑,它产生了脊索动物的中枢神经系统,并且随着一个离散大脑的消失,产生了半索动物的两条神经索之一。少数观点则认为,这个祖先没有神经索;脊索动物和半索动物的神经索是独立进化的。系统发育地层学等新技术可能有助于解决这一难题。

相似文献

1
The origin and evolution of chordate nervous systems.
Philos Trans R Soc Lond B Biol Sci. 2015 Dec 19;370(1684). doi: 10.1098/rstb.2015.0048.
3
Cephalochordates: A window into vertebrate origins.
Curr Top Dev Biol. 2021;141:119-147. doi: 10.1016/bs.ctdb.2020.07.001. Epub 2020 Oct 13.
4
Ancient deuterostome origins of vertebrate brain signalling centres.
Nature. 2012 Mar 14;483(7389):289-94. doi: 10.1038/nature10838.
5
Evolution of basal deuterostome nervous systems.
J Exp Biol. 2015 Feb 15;218(Pt 4):637-45. doi: 10.1242/jeb.109108.
6
Centralization of the deuterostome nervous system predates chordates.
Curr Biol. 2009 Aug 11;19(15):1264-9. doi: 10.1016/j.cub.2009.05.063. Epub 2009 Jun 25.
7
Evolution of bilaterian central nervous systems: a single origin?
Evodevo. 2013 Oct 7;4(1):27. doi: 10.1186/2041-9139-4-27.
8
Chordate origins of the vertebrate central nervous system.
Curr Opin Neurobiol. 1999 Oct;9(5):596-602. doi: 10.1016/S0959-4388(99)00003-3.
9
CNS evolution: new insight from the mud.
Curr Biol. 2009 Aug 11;19(15):R640-2. doi: 10.1016/j.cub.2009.06.020.
10
Enhancer evolution in chordates: Lessons from functional analyses of cephalochordate cis-regulatory modules.
Dev Growth Differ. 2020 Jun;62(5):279-300. doi: 10.1111/dgd.12684. Epub 2020 Jun 16.

引用本文的文献

1
An ancient apical patterning system sets the position of the forebrain in chordates.
Sci Adv. 2025 Jan 24;11(4):eadq4731. doi: 10.1126/sciadv.adq4731.
2
Unraveling mechanisms of human brain evolution.
Cell. 2024 Oct 17;187(21):5838-5857. doi: 10.1016/j.cell.2024.08.052.
4
Chemical communication and its role in sexual selection across Animalia.
Commun Biol. 2023 Nov 20;6(1):1178. doi: 10.1038/s42003-023-05572-w.
5
ATG8-dependent LMX1B-autophagy crosstalk shapes human midbrain dopaminergic neuronal resilience.
J Cell Biol. 2023 May 1;222(5). doi: 10.1083/jcb.201910133. Epub 2023 Apr 4.
6
Form and Function of the Vertebrate and Invertebrate Blood-Brain Barriers.
Int J Mol Sci. 2021 Nov 9;22(22):12111. doi: 10.3390/ijms222212111.
7
Fold Change Detection in Visual Processing.
Front Neural Circuits. 2021 Aug 23;15:705161. doi: 10.3389/fncir.2021.705161. eCollection 2021.
9
Sensing the world and its dangers: An evolutionary perspective in neuroimmunology.
Elife. 2021 Apr 26;10:e66706. doi: 10.7554/eLife.66706.

本文引用的文献

1
Nervous systems and scenarios for the invertebrate-to-vertebrate transition.
Philos Trans R Soc Lond B Biol Sci. 2016 Jan 5;371(1685):20150047. doi: 10.1098/rstb.2015.0047.
2
Neurogenesis in directly and indirectly developing enteropneusts: of nets and cords.
Org Divers Evol. 2015;15(2):405-422. doi: 10.1007/s13127-015-0201-2. Epub 2015 Jan 31.
3
Phylostratigraphic profiles in zebrafish uncover chordate origins of the vertebrate brain.
Mol Biol Evol. 2015 Feb;32(2):299-312. doi: 10.1093/molbev/msu319. Epub 2014 Nov 17.
5
A primitive fish from the Cambrian of North America.
Nature. 2014 Aug 28;512(7515):419-22. doi: 10.1038/nature13414. Epub 2014 Jun 11.
6
Spatiotemporal development of the embryonic nervous system of Saccoglossus kowalevskii.
Dev Biol. 2014 Feb 1;386(1):252-63. doi: 10.1016/j.ydbio.2013.12.001. Epub 2013 Dec 12.
7
A novel N-terminal motif is responsible for the evolution of neural crest-specific gene-regulatory activity in vertebrate FoxD3.
Dev Biol. 2014 Jan 15;385(2):396-404. doi: 10.1016/j.ydbio.2013.11.010. Epub 2013 Nov 16.
8
Evolution of bilaterian central nervous systems: a single origin?
Evodevo. 2013 Oct 7;4(1):27. doi: 10.1186/2041-9139-4-27.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验