Forstner A J, Hofmann A, Maaser A, Sumer S, Khudayberdiev S, Mühleisen T W, Leber M, Schulze T G, Strohmaier J, Degenhardt F, Treutlein J, Mattheisen M, Schumacher J, Breuer R, Meier S, Herms S, Hoffmann P, Lacour A, Witt S H, Reif A, Müller-Myhsok B, Lucae S, Maier W, Schwarz M, Vedder H, Kammerer-Ciernioch J, Pfennig A, Bauer M, Hautzinger M, Moebus S, Priebe L, Sivalingam S, Verhaert A, Schulz H, Czerski P M, Hauser J, Lissowska J, Szeszenia-Dabrowska N, Brennan P, McKay J D, Wright A, Mitchell P B, Fullerton J M, Schofield P R, Montgomery G W, Medland S E, Gordon S D, Martin N G, Krasnov V, Chuchalin A, Babadjanova G, Pantelejeva G, Abramova L I, Tiganov A S, Polonikov A, Khusnutdinova E, Alda M, Cruceanu C, Rouleau G A, Turecki G, Laprise C, Rivas F, Mayoral F, Kogevinas M, Grigoroiu-Serbanescu M, Propping P, Becker T, Rietschel M, Cichon S, Schratt G, Nöthen M M
Institute of Human Genetics, University of Bonn, Bonn, Germany.
Department of Genomics, Life and Brain Center, University of Bonn, Bonn, Germany.
Transl Psychiatry. 2015 Nov 10;5(11):e678. doi: 10.1038/tp.2015.159.
Bipolar disorder (BD) is a severe and highly heritable neuropsychiatric disorder with a lifetime prevalence of 1%. Molecular genetic studies have identified the first BD susceptibility genes. However, the disease pathways remain largely unknown. Accumulating evidence suggests that microRNAs, a class of small noncoding RNAs, contribute to basic mechanisms underlying brain development and plasticity, suggesting their possible involvement in the pathogenesis of several psychiatric disorders, including BD. In the present study, gene-based analyses were performed for all known autosomal microRNAs using the largest genome-wide association data set of BD to date (9747 patients and 14 278 controls). Associated and brain-expressed microRNAs were then investigated in target gene and pathway analyses. Functional analyses of miR-499 and miR-708 were performed in rat hippocampal neurons. Ninety-eight of the six hundred nine investigated microRNAs showed nominally significant P-values, suggesting that BD-associated microRNAs might be enriched within known microRNA loci. After correction for multiple testing, nine microRNAs showed a significant association with BD. The most promising were miR-499, miR-708 and miR-1908. Target gene and pathway analyses revealed 18 significant canonical pathways, including brain development and neuron projection. For miR-499, four Bonferroni-corrected significant target genes were identified, including the genome-wide risk gene for psychiatric disorder CACNB2. First results of functional analyses in rat hippocampal neurons neither revealed nor excluded a major contribution of miR-499 or miR-708 to dendritic spine morphogenesis. The present results suggest that research is warranted to elucidate the precise involvement of microRNAs and their downstream pathways in BD.
双相情感障碍(BD)是一种严重且具有高度遗传性的神经精神疾病,终生患病率为1%。分子遗传学研究已鉴定出首个BD易感基因。然而,该疾病的发病机制仍 largely未知。越来越多的证据表明,微小RNA(一类小的非编码RNA)参与了大脑发育和可塑性的基本机制,提示它们可能参与包括BD在内的几种精神疾病的发病过程。在本研究中,利用迄今为止最大的BD全基因组关联数据集(9747例患者和14278例对照),对所有已知的常染色体微小RNA进行了基于基因的分析。然后在靶基因和通路分析中研究了相关且在大脑中表达的微小RNA。在大鼠海马神经元中对miR-499和miR-708进行了功能分析。在所研究的609个微小RNA中,有98个显示出名义上显著的P值,提示与BD相关的微小RNA可能在已知的微小RNA基因座中富集。经过多重检验校正后,有9个微小RNA显示与BD有显著关联。最有前景的是miR-499、miR-708和miR-1908。靶基因和通路分析揭示了18条显著的经典通路,包括大脑发育和神经元投射。对于miR-499,鉴定出4个经Bonferroni校正的显著靶基因,包括精神疾病全基因组风险基因CACNB2。在大鼠海马神经元中进行的功能分析的初步结果既未揭示也未排除miR-499或miR-708对树突棘形态发生的主要作用。本研究结果提示,有必要开展研究以阐明微小RNA及其下游通路在BD中的精确作用。