Suppr超能文献

直接鉴定法:一种用于识别和量化构象变化的自动化方法——应用于β2 -肾上腺素能G蛋白偶联受体

DIRECT-ID: An automated method to identify and quantify conformational variations--application to β2 -adrenergic GPCR.

作者信息

Lakkaraju Sirish Kaushik, Lemkul Justin A, Huang Jing, MacKerell Alexander D

机构信息

Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland Baltimore, Maryland, 21201.

出版信息

J Comput Chem. 2016 Feb 5;37(4):416-25. doi: 10.1002/jcc.24231. Epub 2015 Nov 12.

Abstract

The conformational dynamics of a macromolecule can be modulated by a number of factors, including changes in environment, ligand binding, and interactions with other macromolecules, among others. We present a method that quantifies the differences in macromolecular conformational dynamics and automatically extracts the structural features responsible for these changes. Given a set of molecular dynamics (MD) simulations of a macromolecule, the norms of the differences in covariance matrices are calculated for each pair of trajectories. A matrix of these norms thus quantifies the differences in conformational dynamics across the set of simulations. For each pair of trajectories, covariance difference matrices are parsed to extract structural elements that undergo changes in conformational properties. As a demonstration of its applicability to biomacromolecular systems, the method, referred to as DIRECT-ID, was used to identify relevant ligand-modulated structural variations in the β2 -adrenergic (β2 AR) G-protein coupled receptor. Micro-second MD simulations of the β2 AR in an explicit lipid bilayer were run in the apo state and complexed with the ligands: BI-167107 (agonist), epinephrine (agonist), salbutamol (long-acting partial agonist), or carazolol (inverse agonist). Each ligand modulated the conformational dynamics of β2 AR differently and DIRECT-ID analysis of the inverse-agonist vs. agonist-modulated β2 AR identified residues known through previous studies to selectively propagate deactivation/activation information, along with some previously unidentified ligand-specific microswitches across the GPCR. This study demonstrates the utility of DIRECT-ID to rapidly extract functionally relevant conformational dynamics information from extended MD simulations of large and complex macromolecular systems.

摘要

大分子的构象动力学可受到多种因素的调节,包括环境变化、配体结合以及与其他大分子的相互作用等。我们提出了一种方法,该方法可量化大分子构象动力学的差异,并自动提取导致这些变化的结构特征。给定一组大分子的分子动力学(MD)模拟,计算每对轨迹协方差矩阵差异的范数。这些范数的矩阵从而量化了整个模拟集构象动力学的差异。对于每对轨迹,解析协方差差异矩阵以提取构象性质发生变化的结构元件。作为其在生物大分子系统中适用性的证明,该方法(称为DIRECT-ID)被用于识别β2-肾上腺素能(β2AR)G蛋白偶联受体中相关的配体调节结构变异。在明确的脂质双层中对β2AR进行微秒级MD模拟,模拟其处于无配体状态以及与配体结合的状态:BI-167107(激动剂)、肾上腺素(激动剂)、沙丁胺醇(长效部分激动剂)或卡拉洛尔(反向激动剂)。每种配体对β2AR构象动力学的调节方式不同,对反向激动剂与激动剂调节的β2AR进行DIRECT-ID分析,识别出了先前研究中已知的选择性传递失活/激活信息的残基,以及一些先前未识别的跨GPCR的配体特异性微开关。这项研究证明了DIRECT-ID在从大型复杂大分子系统的扩展MD模拟中快速提取功能相关构象动力学信息方面的实用性。

相似文献

1
DIRECT-ID: An automated method to identify and quantify conformational variations--application to β2 -adrenergic GPCR.
J Comput Chem. 2016 Feb 5;37(4):416-25. doi: 10.1002/jcc.24231. Epub 2015 Nov 12.
3
Ligand-stabilized conformational states of human beta(2) adrenergic receptor: insight into G-protein-coupled receptor activation.
Biophys J. 2008 Mar 15;94(6):2027-42. doi: 10.1529/biophysj.107.117648. Epub 2007 Dec 7.
4
Molecular dynamics simulations of the effect of the G-protein and diffusible ligands on the β2-adrenergic receptor.
J Mol Biol. 2011 Dec 9;414(4):611-23. doi: 10.1016/j.jmb.2011.10.015. Epub 2011 Oct 20.
6
Structural basis for ligand binding and specificity in adrenergic receptors: implications for GPCR-targeted drug discovery.
Biochemistry. 2008 Oct 21;47(42):11013-23. doi: 10.1021/bi800891r. Epub 2008 Sep 27.
7
Potential Application of Alchemical Free Energy Simulations to Discriminate GPCR Ligand Efficacy.
J Chem Theory Comput. 2015 Mar 10;11(3):1255-66. doi: 10.1021/ct5008907.
8
Structural Elements in the Gαs and Gαq C Termini That Mediate Selective G Protein-coupled Receptor (GPCR) Signaling.
J Biol Chem. 2016 Aug 19;291(34):17929-40. doi: 10.1074/jbc.M116.735720. Epub 2016 Jun 21.
9
Ligand-dependent perturbation of the conformational ensemble for the GPCR β2 adrenergic receptor revealed by HDX.
Structure. 2011 Oct 12;19(10):1424-32. doi: 10.1016/j.str.2011.08.001. Epub 2011 Sep 1.

引用本文的文献

1
Biophysical insights into OR2T7: Investigation of a potential prognostic marker for glioblastoma.
Biophys J. 2022 Oct 4;121(19):3706-3718. doi: 10.1016/j.bpj.2022.05.009. Epub 2022 May 10.
2
A Systematic Review of Inverse Agonism at Adrenoceptor Subtypes.
Cells. 2020 Aug 19;9(9):1923. doi: 10.3390/cells9091923.
4
Exploring a new ligand binding site of G protein-coupled receptors.
Chem Sci. 2018 Jul 13;9(31):6480-6489. doi: 10.1039/c8sc01680a. eCollection 2018 Aug 21.
5
Structure and Dynamics of FosA-Mediated Fosfomycin Resistance in Klebsiella pneumoniae and Escherichia coli.
Antimicrob Agents Chemother. 2017 Oct 24;61(11). doi: 10.1128/AAC.01572-17. Print 2017 Nov.
6
Conformational Heterogeneity of Intracellular Loop 3 of the μ-opioid G-protein Coupled Receptor.
J Phys Chem B. 2016 Nov 23;120(46):11897-11904. doi: 10.1021/acs.jpcb.6b09351. Epub 2016 Nov 15.
7
The Molecular Mechanism of P2Y1 Receptor Activation.
Angew Chem Int Ed Engl. 2016 Aug 22;55(35):10331-5. doi: 10.1002/anie.201605147. Epub 2016 Jul 27.
8
Mechanistic Studies on the Stereoselectivity of the Serotonin 5-HT1A Receptor.
Angew Chem Int Ed Engl. 2016 Jul 18;55(30):8661-5. doi: 10.1002/anie.201603766. Epub 2016 May 31.

本文引用的文献

1
GROMACS 4:  Algorithms for Highly Efficient, Load-Balanced, and Scalable Molecular Simulation.
J Chem Theory Comput. 2008 Mar;4(3):435-47. doi: 10.1021/ct700301q.
2
P-LINCS:  A Parallel Linear Constraint Solver for Molecular Simulation.
J Chem Theory Comput. 2008 Jan;4(1):116-22. doi: 10.1021/ct700200b.
3
CoMoDo: identifying dynamic protein domains based on covariances of motion.
J Chem Theory Comput. 2015 Jun 9;11(6):2841-54. doi: 10.1021/acs.jctc.5b00150. Epub 2015 May 12.
4
SIGNAL TRANSDUCTION. Structural basis for nucleotide exchange in heterotrimeric G proteins.
Science. 2015 Jun 19;348(6241):1361-5. doi: 10.1126/science.aaa5264.
5
Elucidation of Ligand-Dependent Modulation of Disorder-Order Transitions in the Oncoprotein MDM2.
PLoS Comput Biol. 2015 Jun 5;11(6):e1004282. doi: 10.1371/journal.pcbi.1004282. eCollection 2015 Jun.
6
Molecular dynamics simulations of large macromolecular complexes.
Curr Opin Struct Biol. 2015 Apr;31:64-74. doi: 10.1016/j.sbi.2015.03.007. Epub 2015 Apr 4.
7
Mapping functional group free energy patterns at protein occluded sites: nuclear receptors and G-protein coupled receptors.
J Chem Inf Model. 2015 Mar 23;55(3):700-8. doi: 10.1021/ci500729k. Epub 2015 Feb 25.
8
Communication over the network of binary switches regulates the activation of A2A adenosine receptor.
PLoS Comput Biol. 2015 Feb 9;11(2):e1004044. doi: 10.1371/journal.pcbi.1004044. eCollection 2015 Feb.
9
Vibrational entropy differences between mesophile and thermophile proteins and their use in protein engineering.
Protein Sci. 2015 Apr;24(4):474-83. doi: 10.1002/pro.2592. Epub 2014 Nov 5.
10
Development of multiscale models for complex chemical systems: from H+H₂ to biomolecules (Nobel Lecture).
Angew Chem Int Ed Engl. 2014 Sep 15;53(38):9992-10005. doi: 10.1002/anie.201403924. Epub 2014 Jul 27.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验