Suppr超能文献

根系生长的遗传控制:从基因到网络

Genetic control of root growth: from genes to networks.

作者信息

Slovak Radka, Ogura Takehiko, Satbhai Santosh B, Ristova Daniela, Busch Wolfgang

机构信息

Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna Biocenter (VBC), Dr. Bohr-Gasse 3, 1030 Vienna, Austria.

Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna Biocenter (VBC), Dr. Bohr-Gasse 3, 1030 Vienna, Austria

出版信息

Ann Bot. 2016 Jan;117(1):9-24. doi: 10.1093/aob/mcv160. Epub 2015 Nov 11.

Abstract

BACKGROUND

Roots are essential organs for higher plants. They provide the plant with nutrients and water, anchor the plant in the soil, and can serve as energy storage organs. One remarkable feature of roots is that they are able to adjust their growth to changing environments. This adjustment is possible through mechanisms that modulate a diverse set of root traits such as growth rate, diameter, growth direction and lateral root formation. The basis of these traits and their modulation are at the cellular level, where a multitude of genes and gene networks precisely regulate development in time and space and tune it to environmental conditions.

SCOPE

This review first describes the root system and then presents fundamental work that has shed light on the basic regulatory principles of root growth and development. It then considers emerging complexities and how they have been addressed using systems-biology approaches, and then describes and argues for a systems-genetics approach. For reasons of simplicity and conciseness, this review is mostly limited to work from the model plant Arabidopsis thaliana, in which much of the research in root growth regulation at the molecular level has been conducted.

CONCLUSIONS

While forward genetic approaches have identified key regulators and genetic pathways, systems-biology approaches have been successful in shedding light on complex biological processes, for instance molecular mechanisms involving the quantitative interaction of several molecular components, or the interaction of large numbers of genes. However, there are significant limitations in many of these methods for capturing dynamic processes, as well as relating these processes to genotypic and phenotypic variation. The emerging field of systems genetics promises to overcome some of these limitations by linking genotypes to complex phenotypic and molecular data using approaches from different fields, such as genetics, genomics, systems biology and phenomics.

摘要

背景

根是高等植物的重要器官。它们为植物提供养分和水分,将植物固定在土壤中,并可作为能量储存器官。根的一个显著特征是它们能够根据环境变化调整自身生长。这种调整是通过调节一系列不同根性状的机制实现的,如生长速率、直径、生长方向和侧根形成。这些性状及其调节的基础在细胞水平,众多基因和基因网络在时间和空间上精确调控发育,并使其适应环境条件。

范围

本综述首先描述根系,然后介绍揭示根生长和发育基本调控原理的基础研究。接着考虑新出现的复杂性以及如何使用系统生物学方法来解决这些问题,然后描述并论证系统遗传学方法。出于简洁性的考虑,本综述主要限于模式植物拟南芥的研究工作,在该植物中进行了许多根生长调控的分子水平研究。

结论

虽然正向遗传学方法已鉴定出关键调控因子和遗传途径,但系统生物学方法已成功揭示复杂的生物学过程,例如涉及几个分子成分定量相互作用或大量基因相互作用的分子机制。然而,这些方法中的许多方法在捕捉动态过程以及将这些过程与基因型和表型变异联系起来方面存在重大局限性。新兴的系统遗传学领域有望通过使用遗传学、基因组学、系统生物学和表型组学等不同领域的方法将基因型与复杂的表型和分子数据联系起来,从而克服其中一些局限性。

相似文献

1
Genetic control of root growth: from genes to networks.根系生长的遗传控制:从基因到网络
Ann Bot. 2016 Jan;117(1):9-24. doi: 10.1093/aob/mcv160. Epub 2015 Nov 11.
2
Underground tuning: quantitative regulation of root growth.地下调谐:根系生长的定量调节。
J Exp Bot. 2015 Feb;66(4):1099-112. doi: 10.1093/jxb/eru529. Epub 2015 Jan 26.
3
Gene regulatory networks in the Arabidopsis root.拟南芥根中的基因调控网络。
Curr Opin Plant Biol. 2013 Feb;16(1):50-5. doi: 10.1016/j.pbi.2012.10.007. Epub 2012 Nov 26.
4
Toward a systems analysis of the root.迈向根系的系统分析。
Cold Spring Harb Symp Quant Biol. 2012;77:91-6. doi: 10.1101/sqb.2012.77.014506. Epub 2012 Dec 12.
5
Genes and networks regulating root anatomy and architecture.调控根系解剖结构和形态的基因与网络。
New Phytol. 2015 Oct;208(1):26-38. doi: 10.1111/nph.13469. Epub 2015 May 20.
6
Genotypes, Networks, Phenotypes: Moving Toward Plant Systems Genetics.基因型、网络、表型:迈向植物系统遗传学。
Annu Rev Cell Dev Biol. 2016 Oct 6;32:103-126. doi: 10.1146/annurev-cellbio-111315-124922. Epub 2016 Aug 3.
9
Arabidopsis thaliana as a model organism in systems biology.拟南芥作为系统生物学的模式生物。
Wiley Interdiscip Rev Syst Biol Med. 2009 Nov-Dec;1(3):372-379. doi: 10.1002/wsbm.25.

引用本文的文献

本文引用的文献

6
PLETHORA gradient formation mechanism separates auxin responses.多血症梯度形成机制分离生长素反应。
Nature. 2014 Nov 6;515(7525):125-129. doi: 10.1038/nature13663. Epub 2014 Aug 24.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验