Suppr超能文献

暴露于悬浮在普朗尼克® F - 108中的碳纳米管的斑马鱼胚胎的毒性评估和生物累积

Toxicity assessment and bioaccumulation in zebrafish embryos exposed to carbon nanotubes suspended in Pluronic® F-108.

作者信息

Wang Ruhung, N Meredith Alicea, Lee Michael, Deutsch Dakota, Miadzvedskaya Lizaveta, Braun Elizabeth, Pantano Paul, Harper Stacey, Draper Rockford

机构信息

a Department of Biological Sciences and .

b Department of Chemistry and Biochemistry , University of Texas at Dallas , Richardson , TX , USA .

出版信息

Nanotoxicology. 2016 Aug;10(6):689-98. doi: 10.3109/17435390.2015.1107147. Epub 2015 Nov 11.

Abstract

Carbon nanotubes (CNTs) are often suspended in Pluronic® surfactants by sonication, which may confound toxicity studies because sonication of surfactants can create degradation products that are toxic to mammalian cells. Here, we present a toxicity assessment of Pluronic® F-108 with and without suspended CNTs using embryonic zebrafish as an in vivo model. Pluronic® sonolytic degradation products were toxic to zebrafish embryos just as they were to mammalian cells. When the toxic Pluronic® fragments were removed, there was little effect of pristine multi-walled CNTs (pMWNTs), carboxylated MWNTs (cMWNTs) or pristine single-walled carbon nanotubes (pSWNTs) on embryo viability and development, even at high concentrations. A gel electrophoretic method coupled with Raman imaging was developed to measure the bioaccumulation of CNTs by zebrafish embryos, and dose-dependent uptake of CNTs was observed. These data indicate that embryos accumulate pMWNTs, cMWNTs and pSWNTs yet there is very little embryo toxicity.

摘要

碳纳米管(CNTs)通常通过超声处理悬浮在普朗尼克(Pluronic®)表面活性剂中,这可能会干扰毒性研究,因为表面活性剂的超声处理会产生对哺乳动物细胞有毒的降解产物。在此,我们使用斑马鱼胚胎作为体内模型,对含有和不含有悬浮碳纳米管的普朗尼克F - 108进行毒性评估。普朗尼克的超声降解产物对斑马鱼胚胎有毒,就像它们对哺乳动物细胞有毒一样。当去除有毒的普朗尼克片段后,即使在高浓度下,原始多壁碳纳米管(pMWNTs)、羧基化多壁碳纳米管(cMWNTs)或原始单壁碳纳米管(pSWNTs)对胚胎活力和发育几乎没有影响。开发了一种凝胶电泳方法并结合拉曼成像来测量斑马鱼胚胎对碳纳米管的生物积累,并观察到碳纳米管的剂量依赖性摄取。这些数据表明胚胎会积累pMWNTs、cMWNTs和pSWNTs,但对胚胎的毒性非常小。

相似文献

1
Toxicity assessment and bioaccumulation in zebrafish embryos exposed to carbon nanotubes suspended in Pluronic® F-108.
Nanotoxicology. 2016 Aug;10(6):689-98. doi: 10.3109/17435390.2015.1107147. Epub 2015 Nov 11.
2
Generation of toxic degradation products by sonication of Pluronic® dispersants: implications for nanotoxicity testing.
Nanotoxicology. 2013 Nov;7(7):1272-81. doi: 10.3109/17435390.2012.736547. Epub 2012 Oct 29.
3
Quantitation of cell-associated carbon nanotubes: selective binding and accumulation of carboxylated carbon nanotubes by macrophages.
Nanotoxicology. 2018 Sep;12(7):677-698. doi: 10.1080/17435390.2018.1472309. Epub 2018 May 26.
4
Influence of carbon nanotube length on toxicity to zebrafish embryos.
Int J Nanomedicine. 2012;7:3731-9. doi: 10.2147/IJN.S30459. Epub 2012 Jul 20.
5
Toxicity of single-wall carbon nanotubes functionalized with polyethylene glycol in zebrafish (Danio rerio) embryos.
J Appl Toxicol. 2017 Feb;37(2):214-221. doi: 10.1002/jat.3346. Epub 2016 Jun 20.
6
Effect of carbon nanotubes on developing zebrafish (Danio rerio) embryos.
Environ Toxicol Chem. 2007 Apr;26(4):708-16. doi: 10.1897/06-272r.1.
7
Toxicological assessment of PEGylated single-walled carbon nanotubes in early developing zebrafish.
Toxicol Appl Pharmacol. 2018 May 15;347:54-59. doi: 10.1016/j.taap.2018.03.031. Epub 2018 Mar 31.
8
Toxicity analysis of various Pluronic F-68-coated carbon nanotubes on mesenchymal stem cells.
Chem Biol Interact. 2016 Apr 25;250:47-58. doi: 10.1016/j.cbi.2016.03.013. Epub 2016 Mar 10.
10
Developing Xenopus embryos recover by compacting and expelling single wall carbon nanotubes.
J Appl Toxicol. 2016 Apr;36(4):579-85. doi: 10.1002/jat.3203. Epub 2015 Jul 7.

引用本文的文献

1
Generation of Formates Following 20 kHz Sonication of DSPE-mPEG2000 PEGylated Phospholipid Micelles.
Pharmaceutics. 2025 Aug 1;17(8):1008. doi: 10.3390/pharmaceutics17081008.
2
Zebrafish: A Promising Real-Time Model System for Nanotechnology-Mediated Neurospecific Drug Delivery.
Nanoscale Res Lett. 2021 Aug 23;16(1):135. doi: 10.1186/s11671-021-03592-1.
8
Counter ions and constituents combination affect DODAX : MO nanocarriers toxicity and .
Toxicol Res (Camb). 2016 Jun 13;5(4):1244-1255. doi: 10.1039/c6tx00074f. eCollection 2016 Jul 1.
9
Zebrafish as a Model to Evaluate Nanoparticle Toxicity.
Nanomaterials (Basel). 2018 Jul 23;8(7):561. doi: 10.3390/nano8070561.
10
Quantitation of cell-associated carbon nanotubes: selective binding and accumulation of carboxylated carbon nanotubes by macrophages.
Nanotoxicology. 2018 Sep;12(7):677-698. doi: 10.1080/17435390.2018.1472309. Epub 2018 May 26.

本文引用的文献

1
Preparation of water soluble carbon nanotubes and assessment of their biological activity in embryonic zebrafish.
Int J Biomed Nanosci Nanotechnol. 2013 Jan 1;3(1-2):38-51. doi: 10.1504/IJBNN.2013.054514.
2
Zebrafish: A marvel of high-throughput biology for 21 century toxicology.
Curr Environ Health Rep. 2014 Sep 7;1(4):341-352. doi: 10.1007/s40572-014-0029-5.
4
Rapid detection of polyethylene glycol sonolysis upon functionalization of carbon nanomaterials.
Exp Biol Med (Maywood). 2015 Sep;240(9):1147-51. doi: 10.1177/1535370214567615. Epub 2015 Feb 6.
5
Accumulation and distribution of multiwalled carbon nanotubes in zebrafish (Danio rerio).
Environ Sci Technol. 2014 Oct 21;48(20):12256-64. doi: 10.1021/es503006v. Epub 2014 Oct 9.
6
The importance of an extensive elemental analysis of single-walled carbon nanotube soot.
Carbon N Y. 2014 Oct 1;77:912-919. doi: 10.1016/j.carbon.2014.06.005.
7
Evaluation of carbon nanotubes network toxicity in zebrafish (Danio rerio) model.
Environ Res. 2014 Oct;134:9-16. doi: 10.1016/j.envres.2014.06.017. Epub 2014 Jul 18.
8
Tracking and quantification of single-walled carbon nanotubes in fish using near infrared fluorescence.
Environ Sci Technol. 2014;48(3):1973-83. doi: 10.1021/es4046023. Epub 2014 Jan 15.
9
In Vivo Nanotoxicity Testing using the Zebrafish Embryo Assay.
J Mater Chem B. 2013 Jun 10;1. doi: 10.1039/C3TB20528B.
10
Non-mammalian vertebrate embryos as models in nanomedicine.
Nanomedicine. 2014 May;10(4):703-19. doi: 10.1016/j.nano.2013.09.010. Epub 2013 Oct 5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验