Carrascosa E, Bawart M, Stei M, Linden F, Carelli F, Meyer J, Geppert W D, Gianturco F A, Wester R
Institut für Ionenphysik und Angewandte Physik, Universität Innsbruck, Technikerstraße 25, 6020 Innsbruck, Austria.
Department of Physics, AlbaNova, Stockholm University, 10691 Stockholm, Sweden.
J Chem Phys. 2015 Nov 14;143(18):184309. doi: 10.1063/1.4934993.
The nucleophilic substitution reaction CN(-) + CH3I allows for two possible reactive approaches of the reactant ion onto the methyl halide, which lead to two different product isomers. Stationary point calculations predict a similar shape of the potential and a dominant collinear approach for both attacks. In addition, an H-bonded pre-reaction complex is identified as a possible intermediate structure. Submerged potential energy barriers hint at a statistical formation process of both CNCH3 and NCCH3 isomers at the experimental collision energies. Experimental angle- and energy differential cross sections show dominant direct rebound dynamics and high internal excitation of the neutral product. No distinct bimodal distributions can be extracted from the velocity images, which impedes the indication of a specific preference towards any of the product isomers. A forward scattering simulation based on the experimental parameters describes accurately the experimental outcome and shows how the possibility to discriminate between the two isomers is mainly hindered by the large product internal excitation.
亲核取代反应CN(-)+CH3I使得反应物离子对卤代甲烷有两种可能的反应途径,这会导致两种不同的产物异构体。驻点计算预测了两种进攻方式的势能形状相似且主要为共线进攻。此外,一种氢键预反应复合物被确定为可能的中间结构。在实验碰撞能量下,潜在的能量障碍暗示了CNCH3和NCCH3异构体的统计形成过程。实验角度和能量微分截面显示出主要的直接反弹动力学以及中性产物的高内部激发。从速度图像中无法提取出明显的双峰分布,这阻碍了对任何一种产物异构体的特定偏好的指示。基于实验参数的前向散射模拟准确地描述了实验结果,并表明区分这两种异构体的可能性主要受到产物内部高激发的阻碍。