Weber K T
Cardiovascular Institute, Michael Reese Hospital, University of Chicago Pritzker School of Medicine, Illinois 60616.
J Am Coll Cardiol. 1989 Jun;13(7):1637-52. doi: 10.1016/0735-1097(89)90360-4.
Composed of type I and III collagens, the valve leaflets, chordae tendineae and collagen matrix of the myocardium form a structural continuum. Synthesized by cardiac fibroblasts, these fibrillar collagens support and tether myocytes to maintain their alignment, whereas their respective tensile strength and resilience resist the deformation, maintain the shape and thickness, prevent the rupture and contribute to the passive and active stiffness of the myocardium. An acquired or congenital defect in this collagen network can lead to abnormalities in myocardial architecture, mechanics or valve function. In the hypertrophic process that accompanies a pressure overload, for example, increased collagen synthesis, fibroblast proliferation and a structural and biochemical remodeling of the matrix are seen. This includes distinctive patterns of reparative and reactive myocardial fibrosis, each of which alters diastolic and systolic myocardial stiffness and may lead to pathologic hypertrophy. Alternatively, a loss of collagen tethers or decline in matrix tensile strength can be responsible for regional or global transformations in myocardial architecture and function seen in the reperfused ("stunned") myocardium and in dilated (idiopathic) cardiopathy. Inherited disorders in the transcriptional and posttranslational processing of collagen can also alter the biophysical properties of the network. Future studies into collagen gene regulation, gene switching events and the control of collagen synthesis and degradation are needed to develop a more complete understanding of the relation between the collagen network and acquired and inherited forms of heart disease and to utilize therapeutics that will prevent, retard or regress abnormal collagen matrix remodeling.
由I型和III型胶原蛋白组成的心肌瓣叶、腱索和胶原基质形成一个结构连续体。这些纤维状胶原蛋白由心脏成纤维细胞合成,支撑并束缚心肌细胞以维持其排列,而它们各自的拉伸强度和弹性可抵抗变形、维持形状和厚度、防止破裂,并有助于心肌的被动和主动僵硬度。这种胶原网络的后天性或先天性缺陷可导致心肌结构、力学或瓣膜功能异常。例如,在压力超负荷伴随的肥厚过程中,可见胶原合成增加、成纤维细胞增殖以及基质的结构和生化重塑。这包括修复性和反应性心肌纤维化的独特模式,每种模式都会改变舒张期和收缩期心肌僵硬度,并可能导致病理性肥厚。另外,胶原束缚的丧失或基质拉伸强度的下降可能是再灌注(“顿抑”)心肌和扩张型(特发性)心肌病中心肌结构和功能的局部或整体改变的原因。胶原蛋白转录和翻译后加工的遗传性疾病也会改变网络的生物物理特性。需要对胶原基因调控、基因转换事件以及胶原合成和降解的控制进行进一步研究,以更全面地了解胶原网络与后天性和遗传性心脏病形式之间的关系,并利用能够预防、延缓或逆转异常胶原基质重塑的治疗方法。