Schröder Heiner, Creon Anne, Schwabe Tobias
Center for Bioinformatics and Institute of Physical Chemistry, University of Hamburg , Bundesstraße 43, 20146 Hamburg, Germany.
J Chem Theory Comput. 2015 Jul 14;11(7):3163-70. doi: 10.1021/acs.jctc.5b00400.
A reformulated version of Grimme's most recent DFT dispersion correction with Becke-Johnson damping (DFT-D3(BJ)) is presented, which only depends on C6 dispersion coefficients. The role of the higher order correction terms in the DFT-D3(BJ) model is critically investigated, and a sigmoidal interpolation function for adjusting to different density functional approximations (DFA) is employed alternatively, while keeping finite damping of Becke and Johnson. For the proposed C6-only dispersion correction scheme, only one parameter needs to be fitted per DFA (instead of three for DFT-D3(BJ)). Eight standard DFAs from different classes are parametrized and evaluated. In comparison to DFT-D3(BJ), one of the most accurate corrections up to date, the new correction shows only negligible deviations in accuracy for the huge GMTKN30 benchmark set.
提出了Grimme最新的带有Becke-Johnson阻尼的密度泛函理论(DFT)色散校正(DFT-D3(BJ))的重新公式化版本,该版本仅依赖于C6色散系数。对DFT-D3(BJ)模型中高阶校正项的作用进行了严格研究,并交替采用了用于适应不同密度泛函近似(DFA)的S形插值函数,同时保持Becke和Johnson的有限阻尼。对于所提出的仅C6色散校正方案,每个DFA仅需拟合一个参数(而DFT-D3(BJ)需要三个)。对来自不同类别的八个标准DFA进行了参数化和评估。与迄今为止最精确的校正之一DFT-D3(BJ)相比,对于庞大的GMTKN30基准集,新校正的准确度仅显示出可忽略不计的偏差。