Charbonnier Jean-Paul, Brink Monique, Ciompi Francesco, Scholten Ernst T, Schaefer-Prokop Cornelia M, van Rikxoort Eva M
IEEE Trans Med Imaging. 2016 Mar;35(3):882-92. doi: 10.1109/TMI.2015.2500279. Epub 2015 Nov 12.
We present a method for automatic separation and classification of pulmonary arteries and veins in computed tomography. Our method takes advantage of local information to separate segmented vessels, and global information to perform the artery-vein classification. Given a vessel segmentation, a geometric graph is constructed that represents both the topology and the spatial distribution of the vessels. All nodes in the geometric graph where arteries and veins are potentially merged are identified based on graph pruning and individual branching patterns. At the identified nodes, the graph is split into subgraphs that each contain only arteries or veins. Based on the anatomical information that arteries and veins approach a common alveolar sag, an arterial subgraph is expected to be intertwined with a venous subgraph in the periphery of the lung. This relationship is quantified using periphery matching and is used to group subgraphs of the same artery-vein class. Artery-vein classification is performed on these grouped subgraphs based on the volumetric difference between arteries and veins. A quantitative evaluation was performed on 55 publicly available non-contrast CT scans. In all scans, two observers manually annotated randomly selected vessels as artery or vein. Our method was able to separate and classify arteries and veins with a median accuracy of 89%, closely approximating the inter-observer agreement. All CT scans used in this study, including all results of our system and all manual annotations, are publicly available at "http://www.w3.org/1999/xlink">http://arteryvein.grand-challenge.org".
我们提出了一种在计算机断层扫描中自动分离和分类肺动脉和肺静脉的方法。我们的方法利用局部信息来分离分割后的血管,并利用全局信息进行动静脉分类。给定一个血管分割结果,构建一个几何图来表示血管的拓扑结构和空间分布。基于图修剪和个体分支模式,识别几何图中动脉和静脉可能合并的所有节点。在识别出的节点处,将图分割成仅包含动脉或静脉的子图。基于动脉和静脉接近共同肺泡凹陷的解剖学信息,预计动脉子图在肺周边与静脉子图相互交织。利用周边匹配对这种关系进行量化,并用于对相同动静脉类别的子图进行分组。基于动脉和静脉之间的体积差异,对这些分组后的子图进行动静脉分类。对55份公开可用的非增强CT扫描进行了定量评估。在所有扫描中,两名观察者将随机选择的血管手动标注为动脉或静脉。我们的方法能够以89%的中位数准确率分离和分类动脉和静脉,与观察者间的一致性相近。本研究中使用的所有CT扫描,包括我们系统的所有结果和所有手动标注,均可在“http://arteryvein.grand-challenge.org”公开获取。