Suppr超能文献

全景X线片中下颌骨的自动分割

Automatic segmentation of mandible in panoramic x-ray.

作者信息

Abdi Amir Hossein, Kasaei Shohreh, Mehdizadeh Mojdeh

机构信息

Sharif University of Technology , Department of Computer Engineering, Azadi Ave., Tehran 11155-9517, Iran.

Isfahan University of Medical Sciences , School of Dentistry, Department of Maxillofacial Radiology, Isfahan 81595-158, Iran.

出版信息

J Med Imaging (Bellingham). 2015 Oct;2(4):044003. doi: 10.1117/1.JMI.2.4.044003. Epub 2015 Nov 18.

Abstract

As the panoramic x-ray is the most common extraoral radiography in dentistry, segmentation of its anatomical structures facilitates diagnosis and registration of dental records. This study presents a fast and accurate method for automatic segmentation of mandible in panoramic x-rays. In the proposed four-step algorithm, a superior border is extracted through horizontal integral projections. A modified Canny edge detector accompanied by morphological operators extracts the inferior border of the mandible body. The exterior borders of ramuses are extracted through a contour tracing method based on the average model of mandible. The best-matched template is fetched from the atlas of mandibles to complete the contour of left and right processes. The algorithm was tested on a set of 95 panoramic x-rays. Evaluating the results against manual segmentations of three expert dentists showed that the method is robust. It achieved an average performance of [Formula: see text] in Dice similarity, specificity, and sensitivity.

摘要

由于全景X射线是牙科中最常见的口外放射成像,其解剖结构的分割有助于牙科记录的诊断和配准。本研究提出了一种快速准确的全景X射线下颌骨自动分割方法。在所提出的四步算法中,通过水平积分投影提取上边界。一种改进的Canny边缘检测器结合形态学算子提取下颌骨体的下边界。通过基于下颌骨平均模型的轮廓跟踪方法提取下颌支的外边界。从下颌骨图谱中获取最佳匹配模板以完成左右突的轮廓。该算法在一组95张全景X射线上进行了测试。将结果与三位专业牙医的手动分割结果进行评估表明,该方法具有鲁棒性。在骰子相似性、特异性和敏感性方面,其平均性能达到了[公式:见原文]。

相似文献

1
Automatic segmentation of mandible in panoramic x-ray.
J Med Imaging (Bellingham). 2015 Oct;2(4):044003. doi: 10.1117/1.JMI.2.4.044003. Epub 2015 Nov 18.
2
Deep learning for automatic mandible segmentation on dental panoramic x-ray images.
Biomed Phys Eng Express. 2023 Mar 10;9(3). doi: 10.1088/2057-1976/acb7f6.
3
Automatic computation of mandibular indices in dental panoramic radiographs for early osteoporosis detection.
Artif Intell Med. 2020 Mar;103:101816. doi: 10.1016/j.artmed.2020.101816. Epub 2020 Feb 5.
4
Multi-atlas active contour segmentation method using template optimization algorithm.
BMC Med Imaging. 2019 May 24;19(1):42. doi: 10.1186/s12880-019-0340-6.
5
Segmentation of teeth in panoramic dental X-ray images using U-Net with a loss function weighted on the tooth edge.
Radiol Phys Technol. 2021 Mar;14(1):64-69. doi: 10.1007/s12194-020-00603-1. Epub 2021 Jan 5.
7
Automatic reconstruction method for high-contrast panoramic image from dental cone-beam CT data.
Comput Methods Programs Biomed. 2019 Jul;175:205-214. doi: 10.1016/j.cmpb.2019.04.024. Epub 2019 Apr 25.
9
3D surface voxel tracing corrector for accurate bone segmentation.
Int J Comput Assist Radiol Surg. 2018 Oct;13(10):1549-1563. doi: 10.1007/s11548-018-1804-9. Epub 2018 Jun 18.
10
Feasibility of multi-atlas cardiac segmentation from thoracic planning CT in a probabilistic framework.
Phys Med Biol. 2019 Apr 8;64(8):085006. doi: 10.1088/1361-6560/ab0ea6.

引用本文的文献

2
MMDental - A multimodal dataset of tooth CBCT images with expert medical records.
Sci Data. 2025 Jul 9;12(1):1172. doi: 10.1038/s41597-025-05398-7.
4
Mandible bone mineral density estimation using spectral panoramic X-ray imaging.
Imaging Sci Dent. 2025 Mar;55(1):56-64. doi: 10.5624/isd.20240231. Epub 2025 Feb 18.
5
Pano-GAN: A Deep Generative Model for Panoramic Dental Radiographs.
J Imaging. 2025 Feb 2;11(2):41. doi: 10.3390/jimaging11020041.
6
Hybrid CNN-Transformer Model for Accurate Impacted Tooth Detection in Panoramic Radiographs.
Diagnostics (Basel). 2025 Jan 22;15(3):244. doi: 10.3390/diagnostics15030244.
7
A multimodal dental dataset facilitating machine learning research and clinic services.
Sci Data. 2024 Nov 27;11(1):1291. doi: 10.1038/s41597-024-04130-1.
8
Combining public datasets for automated tooth assessment in panoramic radiographs.
BMC Oral Health. 2024 Mar 26;24(1):387. doi: 10.1186/s12903-024-04129-5.
9
Improving resolution of panoramic radiographs: super-resolution concept.
Dentomaxillofac Radiol. 2024 Apr 29;53(4):240-247. doi: 10.1093/dmfr/twae009.

本文引用的文献

1
An automatic detection method for carotid artery calcifications using top-hat filter on dental panoramic radiographs.
Annu Int Conf IEEE Eng Med Biol Soc. 2011;2011:6208-11. doi: 10.1109/IEMBS.2011.6091533.
2
Automatic craniofacial structure detection on cephalometric images.
IEEE Trans Image Process. 2011 Sep;20(9):2606-14. doi: 10.1109/TIP.2011.2131662. Epub 2011 Mar 24.
3
A generative model for image segmentation based on label fusion.
IEEE Trans Med Imaging. 2010 Oct;29(10):1714-29. doi: 10.1109/TMI.2010.2050897. Epub 2010 Jun 17.
4
An approach for the automatic cephalometric landmark detection using mathematical morphology and active appearance models.
Med Image Comput Comput Assist Interv. 2006;9(Pt 1):159-66. doi: 10.1007/11866565_20.
5
A Bayesian model for joint segmentation and registration.
Neuroimage. 2006 May 15;31(1):228-39. doi: 10.1016/j.neuroimage.2005.11.044. Epub 2006 Feb 7.
6
Unified segmentation.
Neuroimage. 2005 Jul 1;26(3):839-51. doi: 10.1016/j.neuroimage.2005.02.018. Epub 2005 Apr 1.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验