Suppr超能文献

人类核糖体中的功能动力学调控活性蛋白质合成的速率。

Functional Dynamics within the Human Ribosome Regulate the Rate of Active Protein Synthesis.

作者信息

Ferguson Angelica, Wang Leyi, Altman Roger B, Terry Daniel S, Juette Manuel F, Burnett Benjamin J, Alejo Jose L, Dass Randall A, Parks Matthew M, Vincent C Theresa, Blanchard Scott C

机构信息

Department of Physiology and Biophysics, Weill Cornell Medical College, New York, NY 10065, USA; Tri-Institutional Training Program in Chemical Biology, Weill Cornell Medical College, Rockefeller University, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA.

Department of Physiology and Biophysics, Weill Cornell Medical College, New York, NY 10065, USA.

出版信息

Mol Cell. 2015 Nov 5;60(3):475-86. doi: 10.1016/j.molcel.2015.09.013. Epub 2015 Oct 22.

Abstract

The regulation of protein synthesis contributes to gene expression in both normal physiology and disease, yet kinetic investigations of the human translation mechanism are currently lacking. Using single-molecule fluorescence imaging methods, we have quantified the nature and timing of structural processes in human ribosomes during single-turnover and processive translation reactions. These measurements reveal that functional complexes exhibit dynamic behaviors and thermodynamic stabilities distinct from those observed for bacterial systems. Structurally defined sub-states of pre- and post-translocation complexes were sensitive to specific inhibitors of the eukaryotic ribosome, demonstrating the utility of this platform to probe drug mechanism. The application of three-color single-molecule fluorescence resonance energy transfer (smFRET) methods further revealed a long-distance allosteric coupling between distal tRNA binding sites within ribosomes bearing three tRNAs, which contributed to the rate of processive translation.

摘要

蛋白质合成的调控在正常生理和疾病状态下均对基因表达有影响,然而目前尚缺乏对人类翻译机制的动力学研究。通过单分子荧光成像方法,我们在单轮和连续翻译反应过程中对人类核糖体结构过程的性质和时间进行了量化。这些测量结果表明,功能复合物表现出与细菌系统不同的动态行为和热力学稳定性。易位前和易位后复合物的结构定义亚状态对真核核糖体的特定抑制剂敏感,证明了该平台在探究药物机制方面的实用性。三色单分子荧光共振能量转移(smFRET)方法的应用进一步揭示了携带三个tRNA的核糖体中远端tRNA结合位点之间存在长距离变构偶联,这对连续翻译的速率有影响。

相似文献

1
Functional Dynamics within the Human Ribosome Regulate the Rate of Active Protein Synthesis.
Mol Cell. 2015 Nov 5;60(3):475-86. doi: 10.1016/j.molcel.2015.09.013. Epub 2015 Oct 22.
3
Transfer RNA-mediated regulation of ribosome dynamics during protein synthesis.
Nat Struct Mol Biol. 2011 Aug 21;18(9):1043-51. doi: 10.1038/nsmb.2098.
4
Single-molecule observations of ribosome function.
Curr Opin Struct Biol. 2009 Feb;19(1):103-9. doi: 10.1016/j.sbi.2009.01.002. Epub 2009 Feb 14.
5
The ribosome uses cooperative conformational changes to maximize and regulate the efficiency of translation.
Proc Natl Acad Sci U S A. 2014 Aug 19;111(33):12073-8. doi: 10.1073/pnas.1401864111. Epub 2014 Aug 1.
6
Single-molecule fluorescence measurements of ribosomal translocation dynamics.
Mol Cell. 2011 May 6;42(3):367-77. doi: 10.1016/j.molcel.2011.03.024.
7
Allosteric collaboration between elongation factor G and the ribosomal L1 stalk directs tRNA movements during translation.
Proc Natl Acad Sci U S A. 2009 Sep 15;106(37):15702-7. doi: 10.1073/pnas.0908077106. Epub 2009 Aug 27.
8
Coupling of ribosomal L1 stalk and tRNA dynamics during translation elongation.
Mol Cell. 2008 May 9;30(3):348-59. doi: 10.1016/j.molcel.2008.03.012.
9
Single ribosome dynamics and the mechanism of translation.
Annu Rev Biophys. 2010;39:491-513. doi: 10.1146/annurev.biophys.093008.131427.
10
Structure and dynamics of a processive Brownian motor: the translating ribosome.
Annu Rev Biochem. 2010;79:381-412. doi: 10.1146/annurev-biochem-060408-173330.

引用本文的文献

1
Human protein synthesis requires aminoacyl-tRNA pivoting during proofreading.
Nat Commun. 2025 Sep 2;16(1):8202. doi: 10.1038/s41467-025-63617-6.
2
Human Protein Synthesis Requires aminoacyl-tRNA Pivoting During Proofreading.
bioRxiv. 2025 Jun 26:2025.06.23.661150. doi: 10.1101/2025.06.23.661150.
3
Observing intersubunit dynamics in single yeast ribosomes.
bioRxiv. 2025 Jun 8:2025.06.05.658109. doi: 10.1101/2025.06.05.658109.
5
Translation elongation: measurements and applications.
RNA Biol. 2025 Dec;22(1):1-10. doi: 10.1080/15476286.2025.2504727. Epub 2025 May 16.
6
Synthesis of Differentially Halogenated Lissoclimide Analogues To Probe Ribosome E-Site Binding.
ACS Chem Biol. 2025 Apr 18;20(4):858-869. doi: 10.1021/acschembio.4c00825. Epub 2025 Mar 22.
7
Impacts of ribosomal RNA sequence variation on gene expression and phenotype.
Philos Trans R Soc Lond B Biol Sci. 2025 Mar 6;380(1921):20230379. doi: 10.1098/rstb.2023.0379.
8
Disruption of the eEF1A1/ARID3A/PKC-δ Complex by Neferine Inhibits Macrophage Glycolytic Reprogramming in Atherosclerosis.
Adv Sci (Weinh). 2025 Apr;12(15):e2416158. doi: 10.1002/advs.202416158. Epub 2025 Feb 20.

本文引用的文献

1
Distinct tRNA Accommodation Intermediates Observed on the Ribosome with the Antibiotics Hygromycin A and A201A.
Mol Cell. 2015 Jun 4;58(5):832-44. doi: 10.1016/j.molcel.2015.04.014. Epub 2015 May 28.
2
Structural snapshots of actively translating human ribosomes.
Cell. 2015 May 7;161(4):845-57. doi: 10.1016/j.cell.2015.03.052.
3
An integrated approach reveals regulatory controls on bacterial translation elongation.
Cell. 2014 Nov 20;159(5):1200-1211. doi: 10.1016/j.cell.2014.10.043.
5
Structural basis for the inhibition of the eukaryotic ribosome.
Nature. 2014 Sep 25;513(7519):517-22. doi: 10.1038/nature13737. Epub 2014 Sep 10.
6
Structure of the mammalian 80S initiation complex with initiation factor 5B on HCV-IRES RNA.
Nat Struct Mol Biol. 2014 Aug;21(8):721-7. doi: 10.1038/nsmb.2859. Epub 2014 Jul 27.
8
Direct evidence of an elongation factor-Tu/Ts·GTP·Aminoacyl-tRNA quaternary complex.
J Biol Chem. 2014 Aug 22;289(34):23917-27. doi: 10.1074/jbc.M114.583385. Epub 2014 Jul 2.
9
Purification, characterization and crystallization of the human 80S ribosome.
Nucleic Acids Res. 2014 Apr;42(6):e49. doi: 10.1093/nar/gkt1404. Epub 2014 Jan 21.
10
Control of the translational machinery by amino acids.
Am J Clin Nutr. 2014 Jan;99(1):231S-236S. doi: 10.3945/ajcn.113.066753. Epub 2013 Nov 27.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验