Institut für Medizinische Physik und Biophysik, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany; Max-Planck Institut für Molekulare Genetik, Abteilung Vingron, AG Ribosomen, 14195 Berlin, Ihnestraße 73, Germany; Institute of Molecular Biology and Genetics, Group of Protein Biosynthesis, 03143 Kiev, Ukraine.
Institut für Medizinische Physik und Biophysik, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany.
Cell. 2014 Jul 3;158(1):121-31. doi: 10.1016/j.cell.2014.04.044.
The extent to which bacterial ribosomes and the significantly larger eukaryotic ribosomes share the same mechanisms of ribosomal elongation is unknown. Here, we present subnanometer resolution cryoelectron microscopy maps of the mammalian 80S ribosome in the posttranslocational state and in complex with the eukaryotic eEF1A⋅Val-tRNA⋅GMPPNP ternary complex, revealing significant differences in the elongation mechanism between bacteria and mammals. Surprisingly, and in contrast to bacterial ribosomes, a rotation of the small subunit around its long axis and orthogonal to the well-known intersubunit rotation distinguishes the posttranslocational state from the classical pretranslocational state ribosome. We term this motion "subunit rolling." Correspondingly, a mammalian decoding complex visualized in substates before and after codon recognition reveals structural distinctions from the bacterial system. These findings suggest how codon recognition leads to GTPase activation in the mammalian system and demonstrate that in mammalia subunit rolling occurs during tRNA selection.
细菌核糖体与明显更大的真核核糖体在核糖体延伸的机制上有多大程度的相似性尚不清楚。在这里,我们展示了哺乳动物 80S 核糖体在后转位状态和与真核 eEF1A⋅Val-tRNA⋅GMPPNP 三元复合物复合状态下的亚纳米分辨率冷冻电镜图谱,揭示了细菌和哺乳动物之间在延伸机制上的显著差异。令人惊讶的是,与细菌核糖体不同,小亚基围绕其长轴的旋转以及与众所周知的亚基间旋转正交,将后转位状态与经典的前转位状态核糖体区分开来。我们将这种运动称为“亚基滚动”。相应地,在密码子识别前后可视化的哺乳动物解码复合物揭示了与细菌系统的结构区别。这些发现表明了密码子识别如何导致哺乳动物系统中 GTPase 的激活,并证明了在哺乳动物中,亚基滚动发生在 tRNA 选择过程中。