Wang Feng, Curry Dennis E, Liu Juewen
Department of Chemistry and ‡Department of Biology, Waterloo Institute for Nanotechnology , Waterloo, Ontario, Canada N2L 3G1.
Langmuir. 2015 Dec 15;31(49):13271-4. doi: 10.1021/acs.langmuir.5b03606. Epub 2015 Nov 30.
Surface forces between inorganic nanoparticles and lipid bilayer is of great relevance to biophysics, medicine, and nanobiotechnology. Adsorbed nanoparticles may influence the fluidity of the underlying lipids, which may in turn influence nanoparticle assembly. Herein three types of lipids (DOPC, Tc = -20 °C; DMPC, Tc = 23 °C; and DPPC, Tc = 41 °C) are used, all with the same phosphocholine (PC) headgroup. Gold nanoparticle (AuNP) color change is monitored as a function of lipid phase transition temperature (Tc), surface ligands on AuNPs, and temperature. Liposomes with higher fluidity induce much faster aggregation of AuNPs. Aside from the kinetic aspect of faster diffusion on fluid bilayers, this faster color change is attributed to the local lipid gelation and merging of gelled regions to eliminate the interface between different lipid phases.
无机纳米颗粒与脂质双层之间的表面力与生物物理学、医学和纳米生物技术密切相关。吸附的纳米颗粒可能会影响其下方脂质的流动性,而这反过来又可能影响纳米颗粒的组装。在此使用了三种类型的脂质(二油酰磷脂酰胆碱,相变温度Tc = -20 °C;二肉豆蔻酰磷脂酰胆碱,Tc = 23 °C;和二棕榈酰磷脂酰胆碱,Tc = 41 °C),它们都具有相同的磷酸胆碱(PC)头部基团。监测金纳米颗粒(AuNP)的颜色变化,作为脂质相变温度(Tc)、AuNP上的表面配体和温度的函数。具有较高流动性的脂质体可诱导AuNP更快地聚集。除了在流体双层上更快扩散的动力学方面外,这种更快的颜色变化归因于局部脂质凝胶化以及凝胶化区域的合并,以消除不同脂质相之间的界面。