Suppr超能文献

用于生物医学应用的混合脂质-纳米粒子复合物。

Hybrid lipid-nanoparticle complexes for biomedical applications.

机构信息

Department of Chemistry & Biochemistry, California State University Long Beach, Long Beach, California 90840-9507, USA.

出版信息

J Mater Chem B. 2019 Feb 7;7(5):695-708. doi: 10.1039/C8TB03084G. Epub 2019 Jan 3.

Abstract

Biomolecule-nanoparticle hybrids have proven to be one of most promising frontiers in biomedical research. In recent years, there has been an increased focus on the development of hybrid lipid-nanoparticle complexes (HLNCs) which inherit unique properties of both the inorganic nanoparticles and the lipid assemblies (i.e. liposomes, lipoproteins, solid lipid nanoparticles, and nanoemulsions) that comprise them. In combination of their component parts, HLNCs also gain new functionalities which are utilized for numerous biomedical applications (i.e. stimuli-triggered drug release, photothermal therapy, and bioimaging). The localization of nanoparticles within the lipid assemblies largely dictates the attributes and functionalities of the hybrid complexes and are classified as such: (i) liposomes with surface-bound nanoparticles, (ii) liposomes with bilayer-embedded nanoparticles, (iii) liposomes with core-encapsulated nanoparticles, (iv) lipid assemblies with hydrophobic core-encapsulated nanoparticles, and (v) lipid bilayer-coated nanoparticles. Herein, we review the properties of each hybrid and the rational design of HLNCs for biomedical applications as reported by recent investigations. Future directions in advancing and expanding the scope of HLNCs are also proposed.

摘要

生物分子-纳米粒子杂化体已被证明是生物医学研究中最有前途的前沿领域之一。近年来,人们越来越关注混合脂质-纳米粒子复合物(HLNCs)的开发,这些复合物继承了无机纳米粒子和脂质组装体(即脂质体、脂蛋白、固体脂质纳米粒子和纳米乳液)的独特性质。通过它们的组成部分的结合,HLNCs 还获得了用于许多生物医学应用的新功能(即刺激触发药物释放、光热疗法和生物成像)。纳米粒子在脂质组装体内的定位在很大程度上决定了杂化复合物的属性和功能,并分类如下:(i)表面结合纳米粒子的脂质体,(ii)双层嵌入纳米粒子的脂质体,(iii)核心包封纳米粒子的脂质体,(iv)具有疏水性核心包封纳米粒子的脂质组装体,以及(v)脂质双层包覆的纳米粒子。在此,我们综述了每种杂化体的性质以及最近研究报道的用于生物医学应用的 HLNCs 的合理设计。还提出了推进和扩展 HLNCs 范围的未来方向。

相似文献

2
Hydrophobic Nanoparticles Modify the Thermal Release Behavior of Liposomes.疏水性纳米粒子改变脂质体的热释放行为。
J Phys Chem B. 2017 May 18;121(19):5040-5047. doi: 10.1021/acs.jpcb.7b01702. Epub 2017 May 4.
4
Interaction of Hydrophobic Tungsten Cluster Complexes with a Phospholipid Bilayer.疏水性钨簇合物与磷脂双层的相互作用。
J Phys Chem B. 2019 Oct 17;123(41):8829-8837. doi: 10.1021/acs.jpcb.9b06006. Epub 2019 Oct 2.
5
Liposomes containing nanoparticles: preparation and applications.含纳米粒子的脂质体:制备与应用。
Colloids Surf B Biointerfaces. 2022 Oct;218:112737. doi: 10.1016/j.colsurfb.2022.112737. Epub 2022 Jul 28.
6
Phospholipid Bilayers: Stability and Encapsulation of Nanoparticles.磷脂双分子层:纳米颗粒的稳定性与包封
Annu Rev Phys Chem. 2017 May 5;68:261-283. doi: 10.1146/annurev-physchem-040215-112634. Epub 2017 Mar 15.

引用本文的文献

本文引用的文献

10
Palladium: a future key player in the nanomedical field?钯:纳米医学领域未来的关键角色?
Chem Sci. 2015 Apr 16;6(4):2153-2157. doi: 10.1039/c5sc00070j. Epub 2015 Jan 19.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验