Suppr超能文献

异常的钠内流会导致小鼠患心肌病和心房颤动。

Aberrant sodium influx causes cardiomyopathy and atrial fibrillation in mice.

作者信息

Wan Elaine, Abrams Jeffrey, Weinberg Richard L, Katchman Alexander N, Bayne Joseph, Zakharov Sergey I, Yang Lin, Morrow John P, Garan Hasan, Marx Steven O

出版信息

J Clin Invest. 2016 Jan;126(1):112-22. doi: 10.1172/JCI84669. Epub 2015 Nov 23.

Abstract

Increased sodium influx via incomplete inactivation of the major cardiac sodium channel Na(V)1.5 is correlated with an increased incidence of atrial fibrillation (AF) in humans. Here, we sought to determine whether increased sodium entry is sufficient to cause the structural and electrophysiological perturbations that are required to initiate and sustain AF. We used mice expressing a human Na(V)1.5 variant with a mutation in the anesthetic-binding site (F1759A-Na(V)1.5) and demonstrated that incomplete Na+ channel inactivation is sufficient to drive structural alterations, including atrial and ventricular enlargement, myofibril disarray, fibrosis and mitochondrial injury, and electrophysiological dysfunctions that together lead to spontaneous and prolonged episodes of AF in these mice. Using this model, we determined that the increase in a persistent sodium current causes heterogeneously prolonged action potential duration and rotors, as well as wave and wavelets in the atria, and thereby mimics mechanistic theories that have been proposed for AF in humans. Acute inhibition of the sodium-calcium exchanger, which targets the downstream effects of enhanced sodium entry, markedly reduced the burden of AF and ventricular arrhythmias in this model, suggesting a potential therapeutic approach for AF. Together, our results indicate that these mice will be important for assessing the cellular mechanisms and potential effectiveness of antiarrhythmic therapies.

摘要

通过主要心脏钠通道Na(V)1.5的不完全失活导致的钠内流增加与人类心房颤动(AF)发病率的增加相关。在此,我们试图确定钠内流增加是否足以引发和维持AF所需的结构和电生理紊乱。我们使用表达在麻醉剂结合位点发生突变的人类Na(V)1.5变体(F1759A-Na(V)1.5)的小鼠,并证明不完全的Na+通道失活足以驱动结构改变,包括心房和心室扩大、肌原纤维紊乱、纤维化和线粒体损伤,以及电生理功能障碍,这些共同导致这些小鼠出现自发和持续性的AF发作。使用该模型,我们确定持续性钠电流的增加会导致动作电位持续时间和转子的异质性延长,以及心房中的波和小波,从而模拟了针对人类AF提出的机制理论。急性抑制钠钙交换体,其针对钠内流增加的下游效应,在该模型中显著降低了AF和室性心律失常的负担,提示了一种潜在的AF治疗方法。总之,我们的结果表明,这些小鼠对于评估抗心律失常治疗的细胞机制和潜在有效性将具有重要意义。

相似文献

引用本文的文献

1
Genetic Animal Models of Cardiovascular Pathologies.心血管疾病的遗传动物模型
Biomedicines. 2025 Jun 21;13(7):1518. doi: 10.3390/biomedicines13071518.
9
Mitochondrial Dysfunction in Cardiac Arrhythmias.线粒体功能障碍与心律失常
Cells. 2023 Feb 21;12(5):679. doi: 10.3390/cells12050679.

本文引用的文献

5
Mechanisms of persistent atrial fibrillation.持续性心房颤动的发生机制。
Curr Opin Cardiol. 2014 Jan;29(1):20-7. doi: 10.1097/HCO.0000000000000027.
10
Rotors and the dynamics of cardiac fibrillation.转子和心脏纤维性颤动的动力学。
Circ Res. 2013 Mar 1;112(5):849-62. doi: 10.1161/CIRCRESAHA.111.300158.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验