Zhou Feng, de la Torre Fernando
IEEE Trans Pattern Anal Mach Intell. 2016 Sep 1;38(9):1774-1789. doi: 10.1109/TPAMI.2015.2501802. Epub 2015 Nov 19.
Graph matching (GM) is a fundamental problem in computer science, and it plays a central role to solve correspondence problems in computer vision. GM problems that incorporate pairwise constraints can be formulated as a quadratic assignment problem (QAP). Although widely used, solving the correspondence problem through GM has two main limitations: (1) the QAP is NP-hard and difficult to approximate; (2) GM algorithms do not incorporate geometric constraints between nodes that are natural in computer vision problems. To address aforementioned problems, this paper proposes factorized graph matching (FGM). FGM factorizes the large pairwise affinity matrix into smaller matrices that encode the local structure of each graph and the pairwise affinity between edges. Four are the benefits that follow from this factorization: (1) There is no need to compute the costly (in space and time) pairwise affinity matrix; (2) The factorization allows the use of a path-following optimization algorithm, that leads to improved optimization strategies and matching performance; (3) Given the factorization, it becomes straight-forward to incorporate geometric transformations (rigid and non-rigid) to the GM problem. (4) Using a matrix formulation for the GM problem and the factorization, it is easy to reveal commonalities and differences between different GM methods. The factorization also provides a clean connection with other matching algorithms such as iterative closest point; Experimental results on synthetic and real databases illustrate how FGM outperforms state-of-the-art algorithms for GM. The code is available at http://humansensing.cs.cmu.edu/fgm.
图匹配(GM)是计算机科学中的一个基本问题,在解决计算机视觉中的对应问题方面发挥着核心作用。包含成对约束的GM问题可以被表述为二次分配问题(QAP)。尽管被广泛使用,但通过GM解决对应问题有两个主要局限性:(1)QAP是NP难问题且难以近似求解;(2)GM算法没有纳入计算机视觉问题中自然存在的节点间几何约束。为了解决上述问题,本文提出了因式分解图匹配(FGM)。FGM将大型成对亲和矩阵分解为较小的矩阵,这些矩阵编码了每个图的局部结构以及边之间的成对亲和性。这种分解带来了四个好处:(1)无需计算成本高昂(在空间和时间上)的成对亲和矩阵;()分解允许使用一种沿路径优化算法,这导致了改进的优化策略和匹配性能;(3)鉴于这种分解,将几何变换(刚性和非刚性)纳入GM问题变得很直接。(4)使用GM问题的矩阵表述和分解,很容易揭示不同GM方法之间的共性和差异。这种分解还与其他匹配算法(如迭代最近点算法)建立了清晰的联系;在合成数据库和真实数据库上的实验结果说明了FGM如何优于GM的现有算法。代码可在http://humansensing.cs.cmu.edu/fgm获取。