Department of Chemistry, University of Minnesota , Minneapolis, Minnesota 55455-0431, United States.
J Chem Theory Comput. 2011 Oct 11;7(10):3027-34. doi: 10.1021/ct200106a. Epub 2011 Aug 31.
We present a perspective on the use of diffuse basis functions for electronic structure calculations by density functional theory and wave function theory. We especially emphasize minimally augmented basis sets and calendar basis sets. We base our conclusions on our previous experience with commonly computed quantities, such as bond energies, barrier heights, electron affinities, noncovalent (van der Waals and hydrogen bond) interaction energies, and ionization potentials, on Stephens et al.'s results for optical rotation and on our own new calculations (presented here) of polarizabilities and of potential energy curves of van der Waals complexes. We emphasize the benefits of partial augmentation of the higher-zeta basis sets in preference to full augmentation at a lower ζ level. Benefits and limitations of the use of fully, partially, and minimally augmented basis sets are reviewed for different electronic structure methods and molecular properties. We have found that minimal augmentation is almost always enough for density functional theory (DFT) when applied to ionization potentials, electron affinities, atomization energies, barrier heights, and hydrogen-bond energies. For electric dipole polarizabilities, we find that augmentation beyond minimal has an average effect of 8% at the polarized triple-ζ level and 5% at the polarized quadruple-ζ level. The effects are larger for potential energy curves of van der Waals complexes. The effects are also larger for wave function theory (WFT). Even for WFT though, full augmentation is not needed for most purposes, and a level of augmentation between minimal and full is optimal for most problems. The calendar basis sets named after the months provide a convergent sequence of partially augmented basis sets that can be used for such calculations. The jun-cc-pV(T+d)Z basis set is very useful for MP2-F12 calculations of barrier heights and hydrogen bond strengths.
我们提出了一种观点,即通过密度泛函理论和波函数理论,使用弥散基函数进行电子结构计算。我们特别强调最小扩充基组和日历基组。我们的结论基于我们之前对常见计算量的经验,例如键能、势垒高度、电子亲和能、非共价(范德华和氢键)相互作用能以及电离势,基于 Stephens 等人的旋光结果,以及我们自己的新计算(此处呈现)极化率和范德华复合物的势能曲线。我们强调了在较高 ζ 水平上部分扩充更高 ζ 基组而不是完全扩充的优势。我们回顾了不同电子结构方法和分子性质下完全、部分和最小扩充基组的使用的优缺点。我们发现,对于密度泛函理论(DFT),最小扩充通常足以应用于电离势、电子亲和能、原子化能、势垒高度和氢键能。对于电偶极极化率,我们发现扩充到最小以外的平均影响在极化三重 ζ 水平上为 8%,在极化四重 ζ 水平上为 5%。对于范德华复合物的势能曲线,影响更大。对于波函数理论(WFT)也是如此。即使对于 WFT,对于大多数目的也不需要完全扩充,在最小和完全之间的扩充水平对于大多数问题是最佳的。以月份命名的日历基组提供了一系列可用于此类计算的部分扩充基组。jun-cc-pV(T+d)Z 基组非常适合 MP2-F12 计算势垒高度和氢键强度。