Pang Jincheng, Özkucur Nurdan, Ren Michael, Kaplan David L, Levin Michael, Miller Eric L
Deptment of Electrical and Computer Engineering, Tufts University, Medford, MA, 02155, USA.
Department of Biomedical Engineering, Tufts University, Medford, MA, 02155, USA ; Department of Biology, Tufts University, Medford, MA, 02155, USA.
Biomed Opt Express. 2015 Oct 16;6(11):4395-416. doi: 10.1364/BOE.6.004395. eCollection 2015 Nov 1.
Phase Contrast Microscopy (PCM) is an important tool for the long term study of living cells. Unlike fluorescence methods which suffer from photobleaching of fluorophore or dye molecules, PCM image contrast is generated by the natural variations in optical index of refraction. Unfortunately, the same physical principles which allow for these studies give rise to complex artifacts in the raw PCM imagery. Of particular interest in this paper are neuron images where these image imperfections manifest in very different ways for the two structures of specific interest: cell bodies (somas) and dendrites. To address these challenges, we introduce a novel parametric image model using the level set framework and an associated variational approach which simultaneously restores and segments this class of images. Using this technique as the basis for an automated image analysis pipeline, results for both the synthetic and real images validate and demonstrate the advantages of our approach.
相差显微镜(PCM)是长期研究活细胞的重要工具。与受荧光团或染料分子光漂白影响的荧光方法不同,PCM图像对比度是由光学折射率的自然变化产生的。不幸的是,允许进行这些研究的相同物理原理在原始PCM图像中产生了复杂的伪影。本文特别感兴趣的是神经元图像,其中这些图像缺陷对于两种特定感兴趣的结构:细胞体(胞体)和树突,表现出非常不同的方式。为了应对这些挑战,我们引入了一种使用水平集框架的新型参数图像模型以及一种相关的变分方法,该方法同时恢复和分割这类图像。将该技术作为自动图像分析管道的基础,合成图像和真实图像的结果都验证并证明了我们方法的优势。