Suppr超能文献

用于相衬显微镜图像的自动神经元分割和神经网络分析方法。

Automatic neuron segmentation and neural network analysis method for phase contrast microscopy images.

作者信息

Pang Jincheng, Özkucur Nurdan, Ren Michael, Kaplan David L, Levin Michael, Miller Eric L

机构信息

Deptment of Electrical and Computer Engineering, Tufts University, Medford, MA, 02155, USA.

Department of Biomedical Engineering, Tufts University, Medford, MA, 02155, USA ; Department of Biology, Tufts University, Medford, MA, 02155, USA.

出版信息

Biomed Opt Express. 2015 Oct 16;6(11):4395-416. doi: 10.1364/BOE.6.004395. eCollection 2015 Nov 1.

Abstract

Phase Contrast Microscopy (PCM) is an important tool for the long term study of living cells. Unlike fluorescence methods which suffer from photobleaching of fluorophore or dye molecules, PCM image contrast is generated by the natural variations in optical index of refraction. Unfortunately, the same physical principles which allow for these studies give rise to complex artifacts in the raw PCM imagery. Of particular interest in this paper are neuron images where these image imperfections manifest in very different ways for the two structures of specific interest: cell bodies (somas) and dendrites. To address these challenges, we introduce a novel parametric image model using the level set framework and an associated variational approach which simultaneously restores and segments this class of images. Using this technique as the basis for an automated image analysis pipeline, results for both the synthetic and real images validate and demonstrate the advantages of our approach.

摘要

相差显微镜(PCM)是长期研究活细胞的重要工具。与受荧光团或染料分子光漂白影响的荧光方法不同,PCM图像对比度是由光学折射率的自然变化产生的。不幸的是,允许进行这些研究的相同物理原理在原始PCM图像中产生了复杂的伪影。本文特别感兴趣的是神经元图像,其中这些图像缺陷对于两种特定感兴趣的结构:细胞体(胞体)和树突,表现出非常不同的方式。为了应对这些挑战,我们引入了一种使用水平集框架的新型参数图像模型以及一种相关的变分方法,该方法同时恢复和分割这类图像。将该技术作为自动图像分析管道的基础,合成图像和真实图像的结果都验证并证明了我们方法的优势。

相似文献

3
Phase Contrast Image Restoration by Formulating Its Imaging Principle and Reversing the Formulation With Deep Neural Networks.
IEEE Trans Med Imaging. 2023 Apr;42(4):1068-1082. doi: 10.1109/TMI.2022.3223677. Epub 2023 Apr 3.
8
A multistaged automatic restoration of noisy microscopy cell images.噪声显微镜细胞图像的多阶段自动恢复
IEEE J Biomed Health Inform. 2015 Jan;19(1):367-76. doi: 10.1109/JBHI.2014.2305445. Epub 2014 Feb 10.

本文引用的文献

3
Image simulation for biological microscopy: microlith.生物显微镜成像模拟:微光刻。
Biomed Opt Express. 2014 May 13;5(6):1822-38. doi: 10.1364/BOE.5.001822. eCollection 2014 Jun 1.
10
Understanding the optics to aid microscopy image segmentation.理解光学原理以辅助显微镜图像分割。
Med Image Comput Comput Assist Interv. 2010;13(Pt 1):209-17. doi: 10.1007/978-3-642-15705-9_26.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验