Mehta Shalin B, Oldenbourg Rudolf
Cellular Dynamics Program, Marine Biological Laboratory, 7 MBL Street, Woods Hole, MA 02543, USA.
Cellular Dynamics Program, Marine Biological Laboratory, 7 MBL Street, Woods Hole, MA 02543, USA ; Physics Department, Brown University, Providence RI 02912, USA.
Biomed Opt Express. 2014 May 13;5(6):1822-38. doi: 10.1364/BOE.5.001822. eCollection 2014 Jun 1.
Image simulation remains under-exploited for the most widely used biological phase microscopy methods, because of difficulties in simulating partially coherent illumination. We describe an open-source toolbox, microlith (https://code.google.com/p/microlith), which accurately predicts three-dimensional images of a thin specimen observed with any partially coherent imaging system, as well as images of coherently illuminated and self-luminous incoherent specimens. Its accuracy is demonstrated by comparing simulated and experimental bright-field and dark-field images of well-characterized amplitude and phase targets, respectively. The comparison provides new insights about the sensitivity of the dark-field microscope to mass distributions in isolated or periodic specimens at the length-scale of 10nm. Based on predictions using microlith, we propose a novel approach for detecting nanoscale structural changes in a beating axoneme using a dark-field microscope.
由于在模拟部分相干照明方面存在困难,图像模拟在最广泛使用的生物相显微镜方法中仍未得到充分利用。我们描述了一个开源工具箱microlith(https://code.google.com/p/microlith),它可以准确预测使用任何部分相干成像系统观察到的薄标本的三维图像,以及相干照明和自发光非相干标本的图像。通过分别比较特征明确的振幅和相位目标的模拟和实验明场及暗场图像,证明了其准确性。该比较为暗场显微镜在10nm长度尺度下对孤立或周期性标本中质量分布的灵敏度提供了新的见解。基于使用microlith的预测,我们提出了一种使用暗场显微镜检测跳动轴丝中纳米级结构变化的新方法。