Wong Victor C, Walpita Deepika, Liu Zhe J, O'Shea Erin K
Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA.
Bio Protoc. 2025 Jun 5;15(11):e5325. doi: 10.21769/BioProtoc.5325.
AMPA-type receptors are transported large distances to support synaptic plasticity at distal dendritic locations. Studying the motion of AMPA receptor vesicles can improve our understanding of the mechanisms that underlie learning and memory. Nevertheless, technical challenges that prevent the visualization of AMPA receptor vesicles limit our ability to study how these vesicles are trafficked. Existing methods rely on the overexpression of fluorescent protein-tagged AMPA receptors from plasmids, resulting in a saturated signal that obscures vesicles. Photobleaching must be applied to detect individual AMPA receptor vesicles, which may eliminate important vesicle populations from analysis. Here, we present a protocol to study AMPA receptor vesicles that addresses these challenges by 1) tagging AMPA receptors expressed from native loci with HaloTag and 2) employing a block-and-chase strategy with Janelia Fluor-conjugated HaloTag ligand to achieve sparse AMPA receptor labeling that obviates the need for photobleaching. After timelapse imaging is performed, AMPA receptor vesicles can be identified during image analysis, and their motion can be characterized using a single-particle tracking pipeline. Key features • Track and characterize the motion of AMPAR GluA1 vesicles in cultured rat hippocampal neurons. • GluA1 tagged with HaloTag (GluA1-HT) is expressed from native loci to avoid overexpression. • Sparse GluA1-HT labeling densities can be achieved without photobleaching via a block-and-chase strategy that utilizes Janelia Fluor (JF) dyes conjugated to HaloTag ligand (HTL). • GluA1-HT vesicles are identified during image analysis, and their motion is characterized using single-particle tracking (SPT) and hidden Markov modeling with Bayesian model selection (HMM-Bayes).
AMPA 型受体被远距离运输,以支持树突远端位置的突触可塑性。研究 AMPA 受体囊泡的运动可以增进我们对学习和记忆潜在机制的理解。然而,阻碍 AMPA 受体囊泡可视化的技术挑战限制了我们研究这些囊泡如何运输的能力。现有方法依赖于从质粒中过表达荧光蛋白标记的 AMPA 受体,导致信号饱和,从而掩盖了囊泡。必须应用光漂白来检测单个 AMPA 受体囊泡,这可能会从分析中消除重要的囊泡群体。在这里,我们提出了一种研究 AMPA 受体囊泡的方案,该方案通过以下方式应对这些挑战:1)用 HaloTag 标记从天然基因座表达的 AMPA 受体;2)采用与 Janelia Fluor 偶联的 HaloTag 配体进行阻断和追踪策略,以实现稀疏的 AMPA 受体标记,从而无需光漂白。在进行延时成像后,可以在图像分析过程中识别 AMPA 受体囊泡,并使用单粒子跟踪管道对其运动进行表征。关键特性• 追踪并表征培养的大鼠海马神经元中 AMPAR GluA1 囊泡的运动。• 用 HaloTag 标记的 GluA1(GluA1-HT)从天然基因座表达,以避免过表达。• 通过利用与 HaloTag 配体(HTL)偶联的 Janelia Fluor(JF)染料的阻断和追踪策略,可以在不进行光漂白的情况下实现稀疏的 GluA1-HT 标记密度。• 在图像分析过程中识别 GluA1-HT 囊泡,并使用单粒子跟踪(SPT)和带有贝叶斯模型选择的隐马尔可夫模型(HMM-Bayes)对其运动进行表征。