Chemical and Environmental Systems Modeling Research Group, National Institute of Fundamental Studies, Kandy, Sri Lanka.
Chemical and Environmental Systems Modeling Research Group, National Institute of Fundamental Studies, Kandy, Sri Lanka.
Chemosphere. 2016 May;150:781-789. doi: 10.1016/j.chemosphere.2015.11.002. Epub 2015 Nov 20.
This study reports the thermodynamic application and non-linear kinetic models in order to postulate the mechanisms and compare the carbofuran adsorption behavior onto rice husk and tea waste derived biochars. Locally available rice husk and infused tea waste biochars were produced at 700 °C. Biochars were characterized by using proximate, ultimate and surface characterization methods. Batch experiments were conducted at 25, 35, and 45 °C for a series of carbofuran solutions ranging from 5 to 100 mg L(-1) with a biochar dose of 1 g L(-1) at pH 5.0 with acetate buffer. Molar O/C ratios indicated that rice husk biochar (RHBC700) is more hydrophilic than tea waste biochar (TWBC700). Negative ΔG (Gibbs free energy change) values indicated the feasibility of carbofuran adsorption on biochar. Increasing ΔG values with the rise in temperature indicated high favorability at higher temperatures for both RHBC and TWBC. Enthalpy values suggested the involvement of physisorption type interactions. Kinetic data modeling exhibited contribution of both physisorption, via pore diffusion, π*-π electron donor-acceptor interaction, H-bonding, and van der Waals dispersion forces and chemisorption via chemical bonding with phenolic, and amine groups. Equilibrium adsorption capacities of RHBC and TWBC determined by pseudo second order kinetic model were 25.2 and 10.2 mg g(-1), respectively.
本研究报告了热力学应用和非线性动力学模型,以便假设机制并比较呋喃丹在稻壳和茶渣衍生生物炭上的吸附行为。在 700°C 下生产了当地可用的稻壳和注入茶渣生物炭。通过使用近似值、最终值和表面特性方法对生物炭进行了表征。在 pH 5.0 下,用乙酸盐缓冲液在 25、35 和 45°C 下进行了一系列浓度从 5 到 100mg/L 的呋喃丹溶液的批量实验,生物炭剂量为 1g/L。摩尔 O/C 比表明稻壳生物炭(RHBC700)比茶渣生物炭(TWBC700)更亲水。负的 ΔG(吉布斯自由能变化)值表明呋喃丹在生物炭上的吸附是可行的。随着温度的升高,ΔG 值的增加表明在较高温度下,RHBC 和 TWBC 的吸附都具有较高的有利性。焓值表明涉及物理吸附类型的相互作用。动力学数据建模表明,物理吸附通过孔扩散、π*-π 电子供体-受体相互作用、氢键和范德华色散力以及通过与酚和胺基团的化学键合的化学吸附都有贡献。通过准二级动力学模型确定的 RHBC 和 TWBC 的平衡吸附容量分别为 25.2 和 10.2mg/g。